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Biological systems exhibit complex behaviors through coordinated responses of 

individual biological components.  With the advent of genome-scale techniques, one focus 

has been to develop methods to model interactions between components to accurately 

describe intact system function.  Mathematical modeling techniques such as constraint-

based modeling, agent-based modeling, cellular automata (CA) modeling and differential 

equation modeling are employed as computational tools to study biological phenomenon. 

We have shown that cellular automata simulations can be used as a computational tool for 
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predicting the dynamics of biological systems with stochastic behavior. The basic premise 

for the research was the observations made during a study of biologically important feed-

forward motifs where CA simulations were compared with differential equation 

simulations. It was shown for classes of structural motifs with feed-forward architecture 

that network topology affects the overall rate of a process in a quantitatively predictable 

manner. The study which comprised of CA simulations compared with differential 

equation modeling show reasonable agreement in the predictability of system dynamics, 

which provided enough support to model biological systems at cellular level to observe 

dynamic system evolution. The great promise shown by CA simulations to model 

biochemical systems was then employed to elucidate evolutionary clues as to why 

biological networks show preference for certain types of motifs and preserve them with 

higher frequency during evolution. It was followed by modeling apoptotic networks to 

shed light on the efficacy of inhibitors and to model cellulose hydrolysis to evaluate 

efficiency of different enzyme systems used by cellulytic bacteria. 
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CHAPTER 1 INTRODUCTION 

 

Over the past several years, systems biology has come up as a promising tool to help us 

understand the underlying principle of biological processes. This advance of systems 

biology was made possible by the invention of high throughput techniques like next 

generation sequencing [1-6] which have increased the ability to study highly complexed 

and otherwise complicated systems with ease. To understand the functions of intact 

biological systems it has become more important to study the organisms and their 

biological processes on systems level along with studying the isolated characteristics of 

individual components. A fundamental step in systems biology is to derive appropriate 

mathematical models for the purposes of analysis and design. For example, to synthesize a 

gene regulatory network, the derivation of a mathematical model is important in order to 

carry out in silico investigations of the network dynamics and to investigate parameter 

variations and robustness issues [7]. One of the most important areas of research in this 

regard is studying the network interactions between different metabolic, regulatory and 

signaling networks. Traditionally computational modeling is used to supplement 

experimental research. These days these models of interacting networks are gaining more 

significance in every area of science due to their increased accuracy and predictability and 

can be used to drive experimental work. 
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Essentially a model is an abstract representation of the system. It depicts the most 

important and interesting features of a real system. A computational model attempts to 

study complex behaviors using computer simulations by translating the physical 

phenomena into a system of equations which governs it. Currently there are many 

modeling approaches which include more traditional methods like differential equation 

modeling and few nontraditional ones like stoichiometric modeling and cellular automata 

or agent based modeling. As current dynamic models of biological systems often are 

developed with a tradeoff between detail and scalability, it becomes important to know the 

strength and weaknesses of each type of modeling in order to make correct choice of 

method to model the system under consideration. The major modeling approaches include 

differential equations modeling (DE), stoichiometric or constraint-based modeling and 

cellular automata (CA) or agent based modeling (ABM), though some hybrid approaches 

are also suggested and implemented [8-12]. 

 

1.1 Computational Modeling Methods Overview 

 

The three major modeling methods described above will be discussed in this section stating 

their methodology and usefulness in modeling different types of systems. 
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1.1.1 Differential equation modeling (DE) 

 

Differential equation modeling is one of the most commonly used methods of modeling 

biochemical reactions. To model these systems by ordinary differential equations (ODE), 

one needs to know the kinetic constants for a particular reaction. Only forward rate 

constants are required in case of reaction proceeding in only one direction while reverse 

rate constants are needed in case of reversible reactions. Using the kinetic rate constants 

and with the knowledge of interactions between different biochemical entities, a 

biochemical reaction can be converted in to differential rate equation. Such a system of 

differential equations, consisting one differential equation for each transformation, can 

represent the whole system. This system of differential equations can be solved using 

concentrations of its components, analytically, in case of linear systems or numerically, in 

case of nonlinear systems to evaluate overall system behavior at any given point in time. 

Different approaches like quasi-steady-state assumption and piece-wise linear 

approximations [13] are proposed to reduce the number of equations and simplify the 

system of equations. While using ODEs, the concentrations of different molecules are 

represented by continuous time variables but discrete time models can also be used to 

study biochemical networks [14, 15]. The discrete time approach is especially deemed 

useful to model systems consisting dynamics on different temporal scales [14]. Linear 

differential equations fail to capture the true nature of nonlinearity in a system generated 

by different interacting components. Hence such a system needs to be modeled using 

nonlinear differential equations [16, 17]. Examples of such systems include the Michaelis-
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Menten kinetics [16] involving formation of transient enzyme-substrate complexes. The 

above mentioned DEs are deterministic. Inclusion of stochastic quantities in DEs leads to 

stochastic differential equation modeling which is an emerging field of mathematics. 

Usefulness of such system of modeling has been shown with examples from 

pharmacokinetics [18], population modeling [19] and biochemical reaction systems [20]. 

Hence, DE modeling offers a reliable and simple method to quickly model biochemical 

systems. Several limitations of this type of modeling are cited. DE models neglect cells’ 

individuality by treating them as populations thereby failing to capture complex behavior 

such as spatially explicit heterogeneous dynamics taking place at individual cell level [10]. 

Also due to the cellular complexity it is difficult to capture the aggregate behavior 

mathematically without considerable simplification [10, 20]. To capture this complexity in 

whole cell models, introduction of many non-linear terms becomes necessary, making the 

DE model difficult to solve. 

 

1.1.2 Stoichiometric modeling 

 

Stoichiometric or constraint-based models [24-27] identify the allowable solution space by 

balancing internal fluxes of the metabolic network of an organism. This allowable solution 

space then can be searched using linear programming for solutions of interest, depending 

upon a well defined objective. The objective could be maximum growth on specific source 

or maximum production of a particular by-product [21-23]. Construction of a constraint-

based model is dependent upon the metabolic fluxes of an organism. Metabolic network 
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information such as metabolite concentrations, input-output fluxes, growth substrates and 

growth rates are required for building a comprehensive metabolic model. The metabolic 

fluxes are written as flux balance equations which is essentially a large scale mass balance 

of the entire metabolic system. Based on these reactions, a stoichiometric matrix can be 

formed such that A = [aij], where [ai]j is the concentration of jth metabolite with sign, 

consumed (−) or produced (+), in ith reaction. The model is then written in form of matrix 

equation and solved for optimizing a particular objective [24-29]. This method of modeling 

gives exact account of the metabolic capabilities of an organism. In this type of modeling 

method, models are often represented with set of linear algebraic equations which are easy 

to compute. Hence it can be scaled to model whole cell metabolism with reasonable 

computing time. It also eliminates the necessity to know all the kinetic constants for 

thousands of reactions while modeling whole cell metabolism. The usefulness of this 

modeling method has been shown to model E.coli. [30-32], Saccharomyces cerevisiae [33-

37] and human [38] metabolic network reconstruction. On the negative side, this approach 

cannot be used to model dynamics of different cell processes, as it assumes a steady state 

for its calculations. It is not possible to model evolution of a system over time due to lack 

of the interactions of different dynamic components of the system. 
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1.1.3 Cellular Automata (CA) / Agent Based Modeling (ABM) 

 

Cellular automata (CA) are a modeling tool, which presents dynamic systems as discrete in 

space, time, and state [40]. It has four basic components [41]: 

 ●  Grid 

 ●  Components 

 ●  Rules governing the behavior of components 

 ●  Initial conditions 

A grid represents the simulation environment which is divided into cells. In biological 

terms, a grid can be thought of as the biological cell that contains proteins, organelles, 

metabolites etc. These biological entities make the components of the system. They are 

also referred to as agents giving the name, agent based modeling. Like the enzymes and 

metabolites, these agents move inside the grid. The movement and interactions between 

different agents are defined by rules governing the system. The rules represent the 

biochemical interactions between different metabolites, proteins and enzymes. These 

interactions are governed by probabilities which define the efficacy of one component 

separating from, joining with or interacting with other components. The movement of 

components in the grid is random and they can move to one of the adjoining sites, their 

von Neumann neighborhood, with equal probability. An abstraction of this process can be 

seen in Figure 1. 
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Figure 1. Graphical illustration of a CA simulation grid. The elements A and B while 

moving over a N x N grid follow the simple deterministic rule A + B = C to produce C 

given both occupy neighboring sites To illustrate the rules or local relationships governing 

the system, following simple biochemical equation can be converted to a CA system as 

shown in Figure 2 

 

 
 

Hence a CA model, starting from initial conditions iterates over the simulation for 

specified number of repetitions. Similar to the above mentioned kinetics of enzyme 

mediated biochemical reaction, other biochemical reactions can be converted to CA for 

building the rules of CA system. 
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Figure 2. Cellular automata representation of a simple biochemical reaction mediated by 
enzyme E, where substrate S is converted into the product P [16]. 
 

This and similar types of rule-based modeling have been of great use in capturing the 

spatial dynamics of a system. It has been successfully implemented in simulating 

biological systems [10, 42-45], biochemical systems [16, 46-49], and physical systems [50-

52], to name a few. Primary motivations for using cellular automata to model biochemical 

systems are as follows. 

1. Flexibility: CA offers the possibility for the components to assume characteristics 

and behavior of any real biological entity, defining relationships between 

components by assigning probabilities to these interactions. These probabilities of 

breaking, joining and transition defined for each pair of components will dictate the 

possibility of the biochemical reactions taking place. Hence it offers flexibility to 

model biological systems at any level starting from interactions between molecules, 
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metabolites, proteins, and regulatory, metabolic and signaling networks, individual 

cells and even on organ level. 

2. Dynamic nature: CA is a dynamic method of simulating biological systems. Unlike 

other modeling systems, CA represents a biological system with its components 

actually moving, resembling real biological entities. It endorses individual 

characteristics to these biological entities rather than treating them as populations. 

Hence the dynamics of the system become more realistic, eliminating the need for 

assumptions like quasi steady state. 

3. Spatial considerations: Other modeling methods fail to consider the spatial effects 

by not having the components of the system interact in space. CA models address 

this issue by having a simulation environment mimicking the real biological 

cellular “space” where effects of physicality are taken into consideration while 

simulating biological systems. This can have profound effects on the evolution of 

system over time, e.g., density of the simulation environment. A sparsely populated 

environment will make the movement of the system components far easier than a 

densely packed surrounding. Such situations can significantly change the behavior 

of biological systems where different entities like substrates and enzymes need to 

“find” each other before the reaction can take place. Such considerations are 

possible while modeling a system using CA. 

4. Statistically quantitative: CA model offers statistically quantitative information 

about the system as the biological system under consideration is simulated many 

times to average out the effects of nonlinearity.  
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5. Emergent behavior: One of the strengths of CA modeling is its ability to show 

emergent behavior of a system over time. The interactions between different 

components of the system can give rise to unpredicted phenomena which are 

otherwise counter-intuitive and impossible to decipher by traditional modeling 

methods.  

6. Reduced complexity of modeling:  To model a system using CA, one only needs to 

know about the interactions between different components of the system. The need 

for reaction rate constants is eliminated due to probabilistic nature of CA modeling. 

Each and every interaction can be defined using probability Complex and nonlinear 

events such as movement of cellular components and formation and dissociation of 

enzyme-substrate complexes can be modeled by assigning predefined probability 

for these interactions. 

Some disadvantages of CA modeling do exist. 

1. Computationally intensive: Due to the fact that CA simulations require multiple 

runs to calculate the standard deviation for each simulations in an effort to average 

out deviations, considerable amount of time is required as the complexity of the 

system increases. This can be attributed to the need to move hundreds of 

components simultaneously and execute the rules of interactions for each 

component of the system individually. 

2. No structural considerations: With CA it is almost impossible to give structural 

considerations to the variety and details of components such as proteins and 

metabolites. CA has a rather non-structural approach towards modeling individual 
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structures as it treats or assumes fairly simple and basic structures e.g. square for 

components. Though the facility to treat each edge of this square differently to 

mimic the presence and absence of active sites on the proteins exists, it can not 

come close to what molecular modeling methods have to offer. 

3. Scalability: Following on the computationally intensive nature of CA simulations, 

current computational infrastructure does not allow scaling a CA model to whole-

cell level. Even though thousands of different reactions and reactants can be 

defined due to availability of whole genome information, it will be difficult to 

obtain any useful information or behavior due to overwhelming computational 

memory requirements. 

These advantages of CA modeling have made it the most suitable approach to model 

different biological systems presented in this dissertation. 

 

1.2 Dissertation overview 

 

The work included in this dissertation can be described as exploratory and method centric 

research. It is exploratory because it started with the use of cellular automata as a tool to 

explore the dynamics of small 3 to 4 node motifs in an effort to build a library of dynamic 

characteristic of such motifs which can be used later to build larger and more complex 

network motifs, dynamics for which can be predicted using the small motifs it is made up 

of. This search led to the development of cellular automata as a method to simulate 

biochemical networks to decipher their dynamics. This research is method-centric because 
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it follows the full life cycle of method development process, starting with development 

itself, followed by method validation and finally leading to the method’s real world 

applications. The method in discussion here is Cellular Automata, or CA, to simulate 

biochemical reaction networks and most of the research presented in this dissertation 

revolves around this notion. Chapter 2 discusses the process of method development, 

validation and application of CA to model small node motifs. Chapters 3 and 4 highlight 

some of the strengths of CA modeling when applied to real-world problems in biology. 

The detailed development of cellular automata as a computational tool is described is 

chapter 2. In the first half of the same chapter, CA is established as a useful and valid tool 

for such simulations. The concept of isodynamicity, which was discovered in this study, 

was then taken further and has formed the basis for the later half of the chapter. In this 

chapter, different patterns among small node motifs were identified, and higher prevalence 

of faster and more robust motifs in the process of evolution of organisms was proposed and 

shown using different organizational levels of interacting pathways. The usefulness of CA 

was shown again in modeling FAS-L activated apoptosis in cells, which is the subject of 

chapter 3 of this dissertation. Strategies like dual inhibition of apoptosis inhibitors, 

modeled using CA showed agreement with published experimental work and proved the 

potential of using CA for prediction of cancer drug targets. In chapter 4, agent based 

modeling (ABM), was used to model cellulose hydrolysis by cellulytic organisms. 

Promising results showing the dependence of particular cellulase system’s efficiency on 

underlying cellulases of the enzyme systems were obtained. Chapter 5 shows the process 

of algorithm development targeted at detecting mutations in organisms grown under 
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different conditions and for several generations. This work was not based on CA but an 

individual project in itself, hence categorized as a separate chapter. The research work 

from past four and half years was summarized and conclusions are presented in chapter 6. 
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CHAPTER 2 CELLULAR AUTOMATA SIMULATION OF TOPOLOGICAL EFFECTS 

ON THE DYNAMICS OF NETWORK MOTIFS 

 

 

2.1 Introduction 

 

The present study focuses on the qualitative and quantitative characterization of a variety 

of network motifs with different architecture, and the relationship between topology and 

overall process rate in network motifs. As described in the introduction, a variety of 

stochastic simulation methods exist that can be used to model networks dynamics [53-56]. 

In this study, cellular automata [57] were selected as a promising method for dynamic 

modeling of all possible topologies of network motifs due to their flexibility, robustness 

and accuracy. Widely applied in a variety of areas of science and technology, the cellular 

automata method recently showed great promise for modeling dynamics of complex 

biological systems [47,48, 51 58, 59]. In modeling biochemical processes, the general 

method used by Kier and Cheng was followed [48, 52]. Specifically, this study examines 

the purely topological effects on motif productivity. Thus, the cellular automata 

simulations were conducted in a manner so as to keep all probabilistic parameters constant. 
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This effectively “freezes” the process stochasticity, making these simulations de facto non-

stochastic. Results of cellular automata topodynamic pattern simulations were verified with 

those obtained by parallel ODE and non-linear differential equations simulations. 

 

2.2 Methods 

 
2.2.1 Parameter selection for simulations of three node motifs 

 

The study of motif topology started with the simulations of several three and four 

node network motifs with different topologies using CA to gain understanding of their 

dynamics. Starting from relatively simple structures, more complex motifs which contain 

feedback, feed-forward and bi-parallel edges were studied. A series of 22 different 

structures having three nodes was simulated. Network structures with four nodes include 

simulations of 32 linear, 20 star, 28 cycles, 21 branched cycles, and 20 bi-cyclic and 25 tri-

cyclic. Over all, I simulated 7 different series and 168 different network structures using 

CA. All the network structures are simulated using five different sets of interaction 

probabilities, 0.01, 0.03, 0.09, 0.27 and 0.81 which have a scaling factor of 3.The matrix 

size of CA grid used is 100 X 100. Different amounts of conversion from initial 

concentration to final concentration used for comparison range from 25 % to 100 %, 

depending on the motif conformation. The speed of conversion is measured in number of 

iterations required for conversion from source node to target node.  

These small motifs were analyzed by measuring the effect of adding/removing 

edges or changing topology on the number of iterations required for S  T conversion. Out 
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of the 7 series mentioned above, detailed analysis of structures with 3 nodes was 

performed to evaluate if dynamics of these small motifs can be predicted using CA. The 

motifs in this series were classified in two different types, one input - two outputs (S1T2) 

and two inputs - one output (S2T1). The starting concentration of inputs or “substrates” 

was taken as 100 CA cells and edges or “enzymes” as 20. All other intermediate nodes had 

initial concentration of 0. Analysis was performed by choosing two arbitrary interaction 

probabilities, 0.09 and 0.81. The grid size of CA matrix is kept constant throughout the 

simulations at 100 X 100. These structures are broadly divided into three main patterns, 

adding a reverse edge, adding a forward edge or feed-forward and adding a backward edge 

or feed-back. The 22 structures were categorized in above mentioned patterns and 

compared on the basis of difference in number of iterations, where a positive value 

indicates acceleration while a negative being deceleration. 

 

2.2.2 Parameter selection for simulations of feed-forward motifs 

 

To generate accurate and reproducible results, several series of tests were performed to 

optimize the basic CA parameters to be used before proceeding with the detailed study on 

feed-forward motifs.  Due to the statistical nature of the CA modeling, a large number of 

simulation runs should be performed to obtain statistically-meaningful results. The optimal 

number of runs must be large enough to provide reliable statistics, and at the same time not 

excessively large so as to minimize the computation time. The influence of the number of 
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runs on the number of iterations needed to reach 100 % conversion of the source substrate 

into the target product, was examined (Table 1).  

The tests were performed at different degrees of lattice occupancy (termed lattice 

density) and with different number of nodes (3, 6 and 9) in the feed-forward FFA series 

shown in Figure 3. Results for 50 runs differed from those obtained at 100, 250 and 1000 

runs (Table 1); the latter three were practically the same and within the range of standard 

deviation observed. Therefore, 100 runs were selected to perform the basic feed-forward 

modeling.      

 
 
 
Figure 3. The members of the examined primary feed-forward motif series FFA. 
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Table 1 

Cellular Automata simulation of the dynamics* of feed-forward series FFA shown in Fig. 4

Number of Nodes Lattice Density % Number of Runs SD** average SD % 
  50 100 250 1000   
3 3.6 447 469 458 460 7 1.51 
 10 143 145 144 144 8 5.56 
 60 21 20 21 20 8 39.0 
6 3.6 939 895 893 906 8 0.89 
 10 287 293 290 288 10 3.45 
 60 41 42 41 41 9 21.6 
9 3.6 1430 1425 1426 1422 2 0.14 
 10 458 460 456 458 2 0.44 
 60 65 65 65 65 9 13.9 
* Dynamics is expressed as the average number of iterations needed for 100% conversion of 100 source substrate cells into the 
target product. It is modeled at different number of nodes, different lattice densities, and different number of cellular automata 
runs. 

** Standard deviation 

 

Another parameter investigated was the CA lattice density (the number of cells per 

unit area). A high density can impede the free cell motion and the results obtained in 

different runs could diverge considerably. That was confirmed in tests showing over 25-

fold increase in the standard deviation of the number of iterations when the lattice density 

was increased within the series 1.0, 3.6, 5, 10, 20, 40, and 60%. On the other extreme, a 

very low density (See Figure 4) would unnecessarily prolong the time for attaining a 

steady state.  For these reasons the 3.6% lattice density (corresponding to 100x100 cells 

lattice with a total of 360 cells occupied by substrates and enzymes) as a constant 

parameter for the detailed study of the dynamics of feed-forward motifs was selected. This 

required resizing the lattice for each of the FF motifs examined. All lattice sizes used were 

within the range of 100x100 to 220x220 cells. 
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Figure 4. The overall rate of the feed-forward process of the source substrate conversion 
into the target product in the Feed-Forward series A (FFA) decreases rapidly with lattice 
density. The number of iterations, needed to attain a steady-state in Series 1, 2 and 3, 
correspond to the number of feed-forward nodes (Fig. 4) equal to 3, 6, and 9, respectively. 
All data are averaged over 100 runs simulation      
 

More detailed simulations were run to quantitatively capture the manner in which the feed-

forward dynamics vary with different lattice density, D, and the number of nodes, V, in the 

FFA-series. Equation (2), relating these quantities, was derived from the data of Table 1: 

  08.36)ln(281.85.640 0862.1 +−= − DVDI               (2) 

The equation derived shows considerable acceleration of the FF processes with the 

increase in density in agreement with the law of mass action, since density is proportional 

to a substrate concentration modeled as number of cells per unit lattice area.  
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In deriving Equation (2) the linear dependence of the number of iterations on the number 

of FF loop nodes was used: I = aV + b, which for V = 3, 6, and 9 nodes were obtained with 

correlation coefficient R2 = 0.9961, 0.9988, and 0.9998, respectively. The regressions best 

expressing the dependence of a and b on the lattice density D were 

a = 640.5D-1.0862 and b = -8.281ln (D) + 36.08                                  (3) 

with R2 equal to 1.0000 and 0.9901, respectively. 

The last parameter to select was the number of source cells (N). The number of cells of all 

other pathway constituents was kept equal to 100 cells.  The enzymes associated with each 

of the biochemical reaction steps were kept equal to 20 cells. All enzyme activities were 

also kept equal (by applying the same CA probabilistic rule) in order to extract the purely 

topological effects on the network dynamics. Since the concentration, simulated as number 

of cells per unit lattice, was kept constant, N itself should not influence the correlation 

coefficient of the linear model relating the number of nodes in the pathway to the rate of 

the source-to-outcome conversion. As shown in Table 2, while the correlation coefficient 

remains within the same range, the increase in the number of source cells in the feed-

forward motif reduces the model standard deviation at the cost of considerable increase in 

the number of iterations needed to reach a steady-state. As a reasonable compromise 

between a low standard deviation and too many iterations, detailed study in the next 

section was performed at N = 500, a parameter value that enabled us to attain steady-state 

with an average standard deviation of 0.31% for less than 10,000 iterations. 

 



www.manaraa.com

33 

Table 2. 

Influence of the size of the feed-forward motif on the dynamics of 100% conversion of the source substrate 
into target product

N* Iterations Range R2 SD % 
100 469 – 1425 0.9960 0.99 
300 1603 – 4473 0.9994 0.76 
500 2966 – 8444 0.9996 0.31 
700 4435 – 13282 0.9989 0.28 
900 6397 – 20526 0.9931 0.19 
*N – Number of source nodes; R2 – correlation 

coefficient; SD % – relative standard deviation 

 

The feed-forward motif FFA shown in Fig. 3 may be termed the primary feed-

forward series (PFF) to be distinguished from some more complex variations on the same 

feed-forward pattern. One may also consider double, triple, etc., FF motifs, which include 

secondary, tertiary, etc. feed-forward edges. Such structural motifs with more complex 

topologies may be obtained by merging two or more primary FF motifs. This approach 

may be of interest in predicting dynamic patterns in larger networks as combinations of 

well established patterns in small subnetworks (motifs). Several such complex cases of 

feed-forward patterns of PFFs (Fig. 5) were selected for this study.
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Figure 5. Feed-forward motifs with different network topologies. The first and the last 
member of the examined seven feed-forward motifs series are shown only. The series 
include all structures with intermediate number of nodes (FFA series had networks with 3 
to 9 nodes; all other series had 4–10 nodes). 
 

Two versions of CA model results were compiled: 50% conversion and 100% 

conversion.  These two categories of results represent the number of CA iterations needed 

for 50% and 100% conversion of the source substrate into the target product. This number 

serves as an inverse measure of the FF motif dynamics (the larger the number of iterations 

needed for arriving at a steady-state, the slower the overall process). As seen in Table 3, 

the linear regression models obtained for 50% conversion have lower correlation 

coefficients (R2 = 0.9796 to 0.9980) and considerably higher standard deviations (SD = 

1.70 to 4.14%), as compared to the corresponding models with 100 % conversion (R2 = 
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0.9990 to 0.9996 and SD = 0.25 to 0.50%). The subsequent analyses are based on the 

results obtained with 100% conversion only. 

Table 3 
Linear dependence of the overall rate of feed-forward motifs on the number of motive nodes

Series N Iterations range Regression R2 SD % 
FFA-50 3–9 804 – 2160 219.00 N + 227.14 0.9796 4.14 
FFB-50 4–10 1735 – 3736 320.18 N + 483.46 0.9966 1.43 
FFC-50 4–10 2043 – 4530 402.36 N + 481.36 0.9980 1.71 
FFD-50 4–10 1375 – 3428 329.93 N + 148.50 0.9939 2.38 
FFE-50 4–10 1080 – 2247 202.93 N + 258.64 0.9874 2.62 
FFF-50 4–10 785 – 1574 133.36 N + 235.07 0.9981 1.70 
FFG-50 4–10 1955 – 4104 365.61 N + 395.89 0.9900 2.78 
FFA-100 3–9 2966 – 8444 920.75 N + 187.50 0.9996 0.31 
FFB-100 4–10 4187 – 9044 800.93 N + 998.07 0.9994 0.29 
FFC-100 4–10 4542 – 10565 993.71 N + 556.00 0.9990 0.25 
FFD-100 4–10 3291 – 8067 802.64 N + 89.357 0.9993 0.34 
FFE-100 4–10 3505 – 7599 683.57 N + 766.14 0.9994 0.33 
FFF-100 4–10 2408 – 4927 418.21 N + 705.07 0.9991 0.50 
FFG-100 4–10 2721 – 5086 397.61 N + 1121.8 0.9991 0.42 
The overall rate is measured by the number of iterations needed for 50% and 100% conversion of the source substrate into the 
target product. Seven series (Fig. 6) of feed-forward motifs with different topology, constant number of source cells, N = 500, and 
constant lattice density, D = 3.6%, are studied. 

 

 

2.3 Results and Discussion 

 

2.3.1 Simulations of three node motifs 

 

Following observations were made after simulating the series of three node networks. 

Pattern 1: Adding a reverse edge. 

A. The reversal of any step of consecutive reaction in a set of two reactions producing the 

same product slows down the production of final product. 
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B. The reversal of a step in a parallel reaction accelerates the production of alternative 

product. 

C. In a feed-forward triangle with one reverse step, reversal of any of the two indirect steps 

considerably decelerates the production of final product. 

D. Reaction decelerates if new edge added reverses the feed-forward edge. 

Pattern 2: Adding a forward edge (feed-forward) 

A. Adding the forward edge accelerates the production of final product except when two 

different reactions produce the same product. 

B. Adding the forward edge accelerates the production of final product in feed-back 

networks where the added edge reduces feed-back 

Pattern 3: Adding a backward edge (feed-back) 

A. Adding a backward edge always decelerates the process in consecutive two-step 

reaction. The strongest deceleration occurs when a second decelerating step is already 

present in the network. 

These preliminary observations, also confirmed by analyzing different topologies 

of four node motifs, formed the basis to study the effects of topology on dynamics of 

networks. The first step was to study biologically significant feed-forward topology in an 

effort to validate CA as a method to simulate dynamics of network motifs. This validation 

was achieved by comparing CA simulation results with a traditional modeling method, DE 

modeling, with promising results to strengthen use of CA as a dynamic modeling tool. 

The central focus of this analysis was to study how network topology affects the dynamics 

of processes in different feed-forward motifs. In order to ensure that the networks analyzed 
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were comparable to enable the identification of stable structure–dynamics patterns, it was 

assumed that (i) the rate constants for all processes are equal, (ii) the initial conditions are 

chosen such that the source (S) is initially five times larger than each of the other species, 

and (iii) all enzyme activities are constant and equal. A chart containing all ten motifs 

having four nodes was constructed (Fig. 6) and their mutual transformations (15 additions 

of an edge with the formation of a new cycle, and three link direction reversals connecting 

feed-forward motifs with bi- and tri-parallel ones), and performed both CA and ODE linear 

and nonlinear modeling. Each network gives rise to a system of four linear ODEs, which 

can be solved explicitly.  In the nonlinear case we performed numerical simulation with 

both irreversible and reversible first reaction steps. In all versions of the ODE models the 

networks were ranked according to their 90% conversion times. The numerical ODE 

values stand for the time measured in arbitrary units needed for a 90% overall conversion 

of the source substrate S into the target product T. 
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2.3.2 Simulations of feed-forward motifs 

 

Figure 6. Chart of all ten four-node motifs (eight feed-forward and F– bi-parallel) of 
conversion of the source node S to target node T: A – linear, B, C, D, E, G and H – feed-
forward (FF), F and J – bi-parallel FF, and I– tri-parallel FF. The motifs are ordered 
according to their dynamic efficacy in producing the target product with a highest rate, 
assessed by decreasing number of iterations, and decreasing time, as produced by the linear 
(LDE) and nonlinear ODE models for 90% S → T conversion. The nonlinear irreversible 
and reversible ODE times are denoted by NDE and NDE', respectively. The mutual 
transformations of the structures shown include 15 additions of another feed-forward link, 
whereas those marked by an asterisk (D → F, E → I, and J → H conversions) include a 
reversal of a single link direction. 
 

The comparison of the efficacy of performance of the ten four-node networks (Fig. 

6) shows that CA and linear ODE order the motifs in the same way with a minor 

exception.  Namely, CA ranks structures H and I with the same highest conversion rate 
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(2408±13 and 2427±15, respectively), since the iteration numbers overlap within the range 

of their standard deviations. The linear ODE also ranks H and I as the fastest four-node 

topologies, adding a third structure G.    

The nonlinear ODE models with reversible and irreversible first steps produce identical 

ordering of the ten structures. It coincides with the ordering of the first seven structures, 

described above by CA and linear ODEs, while suggesting that network I is the fastest, G 

and H have a very close performance, H is shown as slightly slower than G. 

The topological analysis of the nine networks revealed some useful patterns of their 

dynamics. Although the networks analyzed here are relatively simple, they could be of use 

when analyzing local topology in large complex networks.  Several of the observed 

topodynamic patterns are described below. 

 

2.3.2.1 Dynamic Feed-Forward Pattern 1 (DFFP1): 

 

The shorter the graph distance d(S T) between the source node and the target node in a 

feed-forward motif, the higher the overall conversion rate: 

                            A(d=3) < B, C (d=2) < D, E, G, H, I (d=1)                               (4) 

The bi-parallel motifs F and J do not obey this rate inequality. 
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2.3.2.2 Dynamic Feed-Forward Pattern 2 (DFFP2): 

 

The shorter the average path length l(S T) between the source node and the target node in 

a feed-forward motif, the higher the overall conversion rate: 

                   A (l=3) < B, C (l=2.5) < D, E, G, H (l=2) < I (l=5/3)                      (5) 

Accounting for all S  T paths is a slightly more sensitive pattern, which singles out 

network I as the most efficient four-node structure, in agreement with the result obtained 

by the nonlinear ODE model.  The bi-parallel motifs F and J do not obey this feed-forward 

topodynamic trend, which is more important in larger networks where the number of S  

T paths increases rapidly. 

 

2.3.2.3 Dynamic Feed-Forward Pattern 3 (Isodynamicity): 

 

Some feed-forward motifs with different topology produce the same overall S  T 

conversion rate by the CA and linear ODE models: 

                      CA:                         H (2408±13) = I (2427±15)       (6) 

 

The CA and the nonlinear ODE simulations showed these two motifs with different, 

although relatively close efficacy, the structure J being the slower one: 

         CA:     J (3348±18) > F (3291±17)                           (7) 

The property of isodynamicity is a surprisingly novel network pattern, which could warrant 

further detailed studies. 
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2.3.2.4 Dynamic Feed-Forward Pattern 4 (DFFP4): 

 

Any ring closure of a linear chain of conversion of a source substrate S to the target 

product T accelerates the transformation.  Acceleration of the process is strongest when the 

feed-forward link directly connects the substrate to the target and is the smallest when the 

link connects the substrate with an intermediate product (Figs. 7, 8). 

  

Figure 7. Topological feed-forward transformations (1, 2, and 3) always accelerate 
processes described as a linear chain of events. Different mechanisms of ring closure are 
shown, the fastest topology being the one with a direct Source → Target feed-forward link. 
The linear and nonlinear irreversible and reversible ODE times are denoted by LDE, NDE 
and NDE', respectively. 
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Figure 8. Adding a second feed-forward edge always accelerates the processes in a feed-
forward motif. There is no such general pattern for the addition of a third feed-forward link 
(Compare E → G to H → G). The linear and nonlinear irreversible and reversible ODE 
times are denoted by LDE, NDE and NDE', respectively. 
                       

                  A < B < C < D                          (8) 

The ring-closures described by this pattern are shown in Fig. 8 with serial numbers 1, 2, 

and 3. The generality of this topology-dynamics relationship was verified for the entire 

series FFA, FFB, and FFC (Fig. 5) having up to ten motif nodes. In all cases, the standard 

deviation the number of CA iterations was found to be more than two orders of magnitude 

smaller than that number. This pattern goes beyond the simple topological patterns 1 and 2 

shown above, which cannot discriminate between FFB and FFC series. 
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2.3.2.5 Dynamic Feed-Forward Pattern 5 (DFFP5): 

 

Adding a second feed-forward edge (double feed-forward motif), between any pair of 

nodes in the longer path of the FF loop,  speeds up the dynamics of the source substrate 

conversion into the target product (Fig. 8). 

                           D < E < H                       (9) 

These inequalities for the number of iterations, illustrated in Fig. 8 with four node motifs, 

were verified and found valid with no exceptions for all sizes of the three FF series 

examined (four to ten loop nodes). Comparing the FFF and FFE series, one may generalize 

that the acceleration of substrate-to-target conversion is higher when the second FF-link 

starts in a node located on the longer source-target path and ends into the target node, 

rather than when it starts in the source node and ends in another node before the target one. 

Since the structures of the triple-feed-forward motif FFG (see graph G in Fig. 5) combine 

the CA trends of the FFF and FFE series, the acceleration in this series is intermediate 

between those of FFE and FFF. However, the ODE models do not confirm this result with 

the linear model showing G and H to be isodynamic, whereas the two nonlinear models 

show G as slightly more efficient than H.  Therefore, adding a third feed-forward link does 

not necessarily result in acceleration and no stable trend exists 
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2.3.2.6 Dynamic Feed-Forward Pattern 6 (DFFP6): 

 

Reversing the direction of one or more links in a feed-forward motif to turn it into a bi-

parallel and tri-parallel one increases the network efficacy. (Figs.6 and 9). 

 

Figure 9. At the same number of nodes, the feed-forward motif is slower than the bi-
parallel motif. The topology producing the fastest dynamics is that of the tri-parallel 
motif I. 
 
   Feed-Forward    <   Bi-Parallel    <   Tri-Parallel                     (10) 

Three such conversions: 

                              D < F, E < I, J < H                                               (11) 

are shown in Fig. 6, where they are denoted by asterisks. 
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3.2 Patterns of Topological Effect on the Network Motif Performance   

 

The overall reaction rate in a biochemical network motif was assessed by using cellular 

automata (CA) [61, 62, and 63] and ordinary differential equations (ODE) [47, 64] 

simulations. The rate was assessed as the time (ODE method) and the number of iterations 

(CA method) needed for 90% conversion of the source node concentration into the target. 

Several patterns of topological effects accelerating the motif performance were identified. 

The motifs analyzed below are denoted by their ID numbers, as introduced by Uri Alon 

and coworkers [65].  

 

2.3.3 Simulation and classification study of small node motifs 

 

CA was established as a valid method to perform dynamic modeling of 

biochemical network motifs by producing close results to DE modeling. Many patterns of 

small node motifs were identified in the feed forward motif study. Hence it was important 

to systematically classify these patterns according to their dynamic performance, in search 

of a universal trend in the organization of larger biochemical networks. The first and 

foremost thought was to query different organizational levels of different species to see if 

some of these patterns are more common than other. The motivation for undertaking such 

kind of study was that each different pattern of network motifs, offers different benefits. 

E.g. the different isodynamic networks found while studying feed forward mechanism 

might offer a choice of networks differing in cost and redundancy. Also different 
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topologies create an ordering of network motifs based on dynamic characteristics of 

network, making some motifs performing faster than others, when it comes to converting a 

source substrate into a target product. Hence many different patterns of small node motifs 

were identified and studied, both using CA and ODE 

 

 

2.3.3.1 The Average Path Length Pattern:  

 

The shorter the average path length L between the source node and the target node 

(S T) in a feed-forward (FF) and in a bi-parallel (BP) motif, the faster the overall 

conversion rate. Below are examples of comparison between different types of motifs with 

their IDs followed by average path length (L) (See Figure 10). 

 

3-node FF motifs (not shown):                          

Motif 12 (L = 2) < Motif 38 (L = 1.5)    

4-node FF motifs                

536 (L=3) < 2076, 2118 (L=2.5) < 652, 2126, 2254, 2204 (L=2) < 2190 (L=5/3)  

4-node bi-parallel motifs: 

           2140 (L = 7/3) < 2182 (L = 2)  
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Figure 10. The average path length L between the source and the target node (calculated 
by counting each directed link as unit distance) imposes a partial order in the classes of (A) 
4-node feed-forward and (B) 4-node bi-parallel network motifs: the smaller L, the faster 
the motif performance. Given for each motif from top to bottom are its ID [65], sub graph, 
the number of cellular automata (CA) iterations with the range of standard deviation, and 
the time in seconds as found from solving linear ODEs and two versions of nonlinear 
ODEs. 
 

Figure 10 demonstrates the average path length pattern. The topological descriptor L, 

which measures the easiness of communication between the source and the target nodes, is 

shown to capture the trend of accelerating motif performance with the decrease in the 

average path length. The eight feed-forward motifs are partitioned into four groups, and the 
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two bi-parallel motifs are ordered according to this topological pattern of accelerated 

dynamics. A further discrimination of the motifs having the same value of parameter L is 

possible proceeding from additional topological and entropy analysis. 

 

2.3.3.2 The Ring Closure Pattern:  

 

Any ring closure of a linear chain of biochemical reactions converting a source substrate S 

into a target product T accelerates the transformation. The acceleration of the process is the 

strongest when the feed-forward link directly transforms the substrate into the target and 

weakest when only one of the intermediate substrates directly converts into the target 

product [61]. 

Example of the same can be seen in Figure 7 which establishes following ordering of the 

motifs, 

         536 < 2118 < 2076 < 652 

 

2.3.3.3 Adding a Second Feed-Forward Link.  

 

Adding a second feed-forward link between any pair of nodes in the longer path of the FF 

loop, creating thus a second FF loop, speeds up the source substrate conversion into the 

target product [61] (Figure 11) 
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Figure 11. Formation of a double feed-forward loop by adding an extra forward link 
accelerates the process of converting the source substrate S into the target product T. 
The highest acceleration is achieved in motif 2204, which emerges after adding the 
additional link to the two faster initial motifs 652 and 2076.  
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2.3.3.4 Pattern of Feed-Forward Motif Transformation into Bi-Parallel or Tri-parallel 

Motif. 

 

Specific to 4 node motifs, reversing the direction of a link that enters the target 

node in a feed-forward motif turns the motif into a bi-parallel or tri-parallel motif and 

increases its efficacy (fig 12).       

 

Figure 12.  Transforming a feed-forward motif into a bi-parallel or tri-parallel motif by 
reversing a link direction accelerates the process of converting the source substrate into a 
target product. 
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2.3.3.5 Pattern of Entropy-Based Acceleration of Feed-Forward Performance.  
 

The smaller the differences in the lengths of two directed chains connecting a single source 

to a single target in a feed-forward or bi-parallel motif, the faster the motif performance. 

This pattern can be interpreted in terms of the Shannon information theory as increasing 

the information entropy H in the sequence of structures having two chains of varying 

length when the same overall number of links L is distributed more and more evenly 

between the two chains having L1 and L2 links, respectively. 

From , more even distribution of the L∑−= ii LLLLH 22 loglog i terms will result in 

smaller sum and the larger entropy H, as illustrated in Fig. 13.  
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Figure 13.  The more even the distribution of the lengths of two directed chains 
connecting the source node S to the target node T, the faster the transformation of the 
substrate S into the product T.  
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2.3.3.6 Isodynamicity Pattern 
 

Some feed-forward motifs with different topology produce the same overall S  T 

conversion rate (termed herein isodynamic) by the linear ODE models and close values 

according to the nonlinear ODE models and the cellular automata (CA). (Figure 14) 

                  

Figure 14.  Two sets of isodynamic 4-node motifs characterized by constant overall time 
in s according to the linear ODE models, and close values of the corresponding nonlinear 
ODE models and the CA iterations, needed for 90% conversion of the source substrate S 
into the target product T.  
   

Two theorems provide examples of classes of motifs that are pair-wise isodynamic 

according to linear ODE models [64]. The first one (Fig. 15A) extends this property to all 

feed-forward motifs, in which the target vertex has the maximal in-degree of V-1, where V 

is the total number of motif nodes. The second theorem deals with bi-parallel motifs 

having V vertices with alternating labeling (Fig. 15B).  They were shown to be isodynamic 
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to the derivative motifs having extra directed link(s) that connect vertices k and (k + 1) 

(regardless of orientation) if k has the same parity as V and 1 < k < (V − 1). 

 

Figure 15.  Illustration of the two theorems of isodynamicity of network motifs [64].  
A. Deletion of an extra link in the row of motifs 2254  2190  2188, or B. Adding one 
or more extra directed link (both directions allowed) between two nodes labeled with 
consecutive numbers, does not change the time needed for transformation of the substrate S 
into the product T as calculated by linear ODEs.  
 

Although in the more detailed nonlinear ODE modeling these motifs are no longer 

isodynamic, yet their dynamic properties remain fairly close. For example, motif 2140 is 

performing slower than motif 2182 by about half a arbitrary time unit in both nonlinear 

ODE simulations and almost exactly the same is the slightly lower performance of motif 

2254, as compared to motif 2190 (Figure 16).  
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ID      2182                         2140                       2190                        2254 

 
Figure 16.  Pairs of isodynamic motifs having identical dynamic characteristics. 
 

2.4. Conclusions  

 
The technique of dynamic modeling with cellular automata shows great promise in 

modeling complex biological systems. Such systems can be broken down to subsystems of 

smaller scale (to ease computational time) and simulated independently so as to shed light 

on the processes on a larger scale. The essential element in such applications is the 

extraction of useful topological-dynamic (topodynamic) patterns, which identify specific 

effects of topological structure on the dynamics of network processes while keeping all 

kinetic parameters constant. The beauty of the topological approach in studies of dynamics 

is in the generality of the patterns found, which are independent of the nature of the 

processes, and may be applied to any process of chemical transformation, as well as to any 

process of mass, energy or information transfer down the forward direction of the motifs.  

The dynamics of the feed forward motifs observed in this study revealed important aspects 

of networks with such components. Not only does any feed-forward link added to a linear 

cascade of chemical/biochemical reactions accelerate the process, but the acceleration is 

further enhanced by adding a second forward link in the feed-forward loop. The 
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topological hierarchy established in this study for four-node motifs predicts that the 

acceleration of the overall process in such motifs will continue increasing with the 

decrease in the distance (both along the shortest path and along all paths) between the input 

and output nodes, whereas at the same distance the cellular automata and differential 

equation simulations produce in a similar manner a further distinction between the motifs’ 

dynamic efficacy. The intriguing property of isodynamicity was identified showing motifs 

with the same number of nodes and different topology to have the same overall rate of 

input-to-output transformation. If shown to be present in larger biological networks, the 

observed isodynamic property could indicate a level of biological robustness at a 

topological level. Further topology-dynamics studies involving construction of networks 

from combinations of such structural blocks will aid in increasing the understanding of 

complex biological networks. 

This study was conducted in order to study different patterns of network motifs. Out of 

many patterns investigated, isodynamic patterns are of most interest due to their ability to 

provide extra tolerance against random mutations. Finding pairs of isodynamic (or near-

isodynamic) motifs raises the question whether motif topologies with extra link(s), which 

do not contribute to a better efficiency, do really exist in biochemical networks and if so, 

what could be their biological meaning. Also it will be interesting to query networks on 

different organizational levels to check if there is evolutionary preference for motifs like 

with IDs 2190, 2254 and 2204 which perform faster than other four node motifs. To 

address such questions, following hypothesis were formulated, work on which is currently 

under way [66]:
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Hypothesis #1:  Network motif topologies enabling high overall rate of biochemical 

reactions converting a source substrate into a target product are evolutionary beneficial and 

could be conserved with higher frequency in some types of biochemical networks.  

Hypothesis #2:  Isodynamic motifs having extra “null-efficiency” link(s) provide higher 

resilience against attacks compared to the isodynamic motifs lacking such links and could 

be conserved with higher frequency in some types of biochemical reactions. 
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CHAPTER 3 STUDY OF FAS-L INDUCED APOPTOSIS 

 

 

 

3.1 Introduction                 

 

Out of the many patterns shown in the previous chapter, isodynamicity was of 

particular interest in highly redundant networks. One good example of such robust network 

is the FAS-L induced apoptosis pathway. It is a signaling pathway, which is activated by 

an extracellular protein (FAS-ligand) and ends with the decomposition of DNA by DFF 

heterodimer and protein cleavage by caspase 6 (CASP6) (fig. 17).  Study of FAS-L 

induced apoptosis started with building a CA model of the apoptosis process and searching 

for isodynamic motifs within the apoptotic network. The isodynamicity revealed in initial 

studies demanded further enhancements to the model to study FAS-L pathway in detail and 

apply it to model strategies to fight cancer. Different components of the apoptosis pathway 

were added systematically to assess the effects of pro and anti-apoptotic molecules. Two 

main strategies were considered while modeling the FAS-L induced apoptosis network. 

First, inhibitors of apoptosis were modulated to inhibit apoptosis in T-cells. Secondly, 

 



www.manaraa.com

59 

inhibitors of inhibitors of apoptosis were used to eliminate the effects of apoptosis 

inhibitors and allow cancer cells to proceed with programmed cell death. Before 

proceeding with the model, it is important to overview the FAS-L induced apoptosis 

process. 

Apoptosis is a process of programmed cell death, which is the most common 

mechanism by which the body eliminates damaged or unneeded cells [67].  The abnormal 

functioning of apoptosis is associated with a multitude of diseases [68], and is critical 

aspect of cancer development and tumor cell survival [69]. Such health implications 

underscore the pharmacological potential of designing strategies to manipulate apoptosis 

[70-77]. Apoptosis is initiated via two types of signaling pathways, the components of 

which are potential anticancer therapeutic targets. The intrinsic pathways are activated by 

developmental signals or severe cell stress, while the extrinsic pathways are triggered by 

pro-apoptotic ligands, such as FAS ligand (FASL), which binds to the pro-apoptotic death 

receptor FAS (CD95). The FASL/FAS binding induces recruitment of the FAS-associated 

death domain protein (FADD) and the initiator caspases 8 or 10 as procaspases, forming a 

death-inducing signaling complex (DISC). Formation of the DISC brings procaspase 

molecules into close proximity of one another, enabling their autocatalytic activation and 

release into the cytoplasm where they activate effector caspases (CASP3, CASP6, and 

CASP7). The latter split the heterodimer DFF (DNA Fragmentation Factor), and the 

released DFF40 fragments DNA, while CASP6 cleaves proteins vital for cell survival. The 

caspase cascade is regulated by c-FLIP (FADD-like apoptosis regulator) proteins and the 
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IAP (Inhibitor of Apoptosis) protein family, XIAP being known as the most potent 

inhibitor (Fig. 17). 

 The FAS protein plays a critical role for the immune system by killing pathogen-

infected cells [78] and preventing autoimmunity and tumors. Recent studies [79] have 

revealed important details of the role of T-cells in the immune response to fight cancerous 

and HIV-infected cells. The latter induce apoptosis in T-cells and kill them by 

overexpressing FASL, while preventing their own destruction by the same apoptotic 

mechanism. Based upon these recent findings, the present study developed a dynamic 

model simulating two strategies against cancer. The classical approach aims to kill 

cancerous cells, a goal that we simulated by strong suppression of apoptosis inhibitors 

FLIP and IAP by siRNA and SMAC, respectively, following the recent study of Wilson et 

al. [80] and Cheung et al. [81]. The opposite strategy of maximizing the inhibition of FLIP 

and IAP was applied to simulate blocking the apoptotic process in T-cells that is caused by 

a tumor counterattack [79].  Such a strategy to restore the potency of the immune system 

could also be of interest in the fight against HIV-infection.  

 



www.manaraa.com

61 

 

 

 

Figure 17. The FAS-ligand induced apoptosis and its fine regulation by the apoptosis 
inhibitors FLIP and IAP, and their suppressors siRNA and SMAC. 
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3.2 Methods 
 
 

3.2.1 The Set of Apoptosis Interactions 

The following system of equations was used to simulate FAS-L induced apoptosis 

as given in Figures 18 and 22 (Letter A is used as a prefix for protein name to denote the 

protein active form): 

 

Attachment of Ligand  

FAS + FASL  AFAS + FASL 

Recruitment of DISC  

AFAS + AFAS  FASFAS 

FASFAS + FADD  FASFADD 

Formation of DISC Complex  

FASFADD + CASP8  FASFADDACASP8 

FASFADD + CASP10  FASFADDACASP10 

Activation of Caspases  

FASFADDACASP8 + CASP10  FASFADDACASP10 + ACASP8 

FASFADDACASP8 + CASP3  ACASP3 + FASFADDACASP8 

FASFADDACASP8 + CASP6  ACASP6 + FASFADDACASP8 

FASFADDACASP8 + CASP7  ACASP7 + FASFADDACASP8 

FASFADDACASP10 + CASP3  ACASP3 + FASFADDACASP10 

FASFADDACASP10 + CASP6  ACASP6 + FASFADDACASP10 
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FASFADDACASP10 + CASP7  ACASP7 + FASFADDACASP10 

ACASP3 + CASP6  ACASP6 + ACASP3 

ACASP3 + CASP7  ACASP7 + ACASP3 

ACASP7 + CASP6  ACASP6 + ACASP7 

Activation of Apoptosis 

DFF45DFF40 + ACASP3  DFF45ACASP3 + DFF40 

DFF45DFF45 + ACASP7  DFF45ACASP7 + DFF40 

Inhibition of Apoptosis 

FLIP + FASFADDACASP8  FLIP FASFADDCASP8 

FLIP + FASFADDACASP10  FLIP FASFADDCASP10 

AIAP + ACASP3  IAPCASP3 

AIAP + ACASP6  IAPCASP6 

AIAP + ACASP7  IAPCASP7 

Suppression of Inhibitors 

siRNA + FLIP  siRNAFLIP 

SMAC + IAP    IAPSMAC 

Mitochondrial Apoptosis Pathway 

ACASP8 + Bid  ABID + ACASP8 

ABID + Mit  cytC + AMIT 

ABID + Mit  SMAC + AMIT  

cytC + CASP9  ACASP9 + cytC 

ACASP9 + CASP3  ACASP3 + ACASP9 
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ACASP3 + CASP9  ACASP9 + ACASP3 

ACASP9 + AIAP  ACASP9 + IAP 

 

3.2.2 Parameters Used 

 

 Expression profiles of the apoptotic proteins [91] were used as a basis for input 

concentrations (number of CA cells):   FASL - 50,  FAS - 200, FADD - 125,  FLIP - 125,  

IAP - 300,  DFF - 500,  CASP3 - 150,  CASP6 - 40, CASP7 - 400, CASP8 - 750, CASP9 - 

375, CASP10 - 50,  Mit - 1000, Bid - 75, SMAC - 400, siRNA - 200. (The DFF and 

siRNA expression levels were not found in the literature, and the values presented here 

were assumed within the same range with the measured expression data). The initial 

concentrations of the products of the above equations were assumed zero.  

The modeling was performed by 100 runs for each specific case considered. The number 

of iterations and the cell count in each run was recorded after reaching a steady (or near-

steady) state configuration, and averaged over all runs. In the rare cases when the 

attainment of steady state was computationally highly demanding we stopped the iterative 

process at a sufficiently large number of iterations (25,000). We used a variable square grid 

of minimum 100x100 cells size embedded on a torus.  The variations in the size were 

related to the condition of having comparable cell density of 60%. The basic parameter 

varied was that of the transitional probability P(T) of apoptosis elementary steps. The 

preliminary parameter testing has shown that selecting P(T) = 0.5 for almost all pathway 

 



www.manaraa.com

65 

steps, except few which were varied within the 0 to 1 range, provides stable patterns of the 

pathway modeled. 

 

3.2.3 Variations of essential probabilities 

 

  DISC consists of lattice of FAS dimer and FADD, to which CASP 8 or CASP10 or 

FLIP can be attached. To simulate a stable and functional DISC lattice, the breaking (br) 

and joining (j) probabilities for FAS-FAS and FAS-FADD interactions were varied, as 

shown in Table 4. A dependence between the joining and breaking probabilities of FAS 

and FADD was assumed as a condition for the formation of a stable lattice and 

approximately defined as P(j, 2FAS-FADD) ≈ 1-P(br, FAS-FAS). The probability values 

P(br) = 0.3 for FAS dimer dissociation, P(j) = 0.8 for joining  FAS and FADD and P(tr) = 

0.4 for FAS-FADD bond formation were selected as these probabilities enabled the fastest 

formation of a DISC lattice to make the model consistent with existing evidence. The 

stability of the DISC lattice was further ensured by assuming a low probability of breaking, 

P(br, FAS-FADD) = 0.1. This simulated the transient nature of DISC, allowing it to 

dissociate weakly rather than making it a permanent structure with P (br) = 0. 
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Table 4: Variation of Probabilities Relevant to the Formation of the DISC Apoptotic 

Complex  

 
 
FAS-FAS 
P(br) 

 
2FAS-FADD 
P(j) 

 
2FAS-FADD  
P(tr) 
 

 
Iterations 

 
STD  
DEV 

         0.02 

          0.1 

          0.3 

          0.3 

          0.3 

          0.3* 

          0.5 

0.98 

0.9 

0.7 

0.7 

0.9 

0.8 

0.5 

0.9 

0.7 

0.1 

0.4 

0.4 

0.4 

0.1 

3334 

1409

2961

1122

1127

1116

1163

15.00 

11.63 

11.35 

15.24 

12.48 

14.42 

15.16  

*Optimized values given in bold 

 

Different transition probabilities of inhibition ranging from 0.05 to 0.9 were tested 

to simulate the effects of progression from weaker inhibition to a stronger one. A linear 

trend was observed with the DFF40 concentration showing inverse relationship to the 

strength of inhibition. Hence, P (tr) = 0.5 was used for all inhibitory effects in order to 

optimize computational time. 
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3.3 Results and discussion 

 

3.3.1 Study of isodynamicity in FAS-L apoptosis pathway 

FAS-L apoptosis pathway presents, without including inhibitors, a 7 nodes and 14 

edges network structure with high amount of cross linkage to preserve the ability of the 

network to function even in the case of excessive damage (Figure 17). 

 

4 CASP6
E3

2 E7
E4 E10

E1 E13
1
FADD E6 E5

E2 E12
E8 DFF

3 E11
E9 7

E14
6  

Figure 18: The FAS-L induced apoptosis network is shown, without inhibitors, 
represented as a network structure purely based on nodes and edges with source indicated 
by FADD, representing DISC for simplification, and targets indicated by CASP6 and DFF. 
 

This network was subjected to single and double edge deletion and single node 

deletion to biologically correspond to the gene deletion or mutation event. The results are 

presented in tables 5, 6 and 7. In table 5 and 7, similar color is used to show deletions with 

isodynamic behavior. These colors also correspond to respective node and edge with same 

color in Figure 18. 
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Table 5: Deletion of single edges and compared for isodynamicity. Simulations performed 
for constant 20000 iterations. Final concentrations given in cellular automata cells with 
corresponding standard deviation for Caspase 6 and DFF40. 
 
Single Deletion CASP6 DFF
Link removed iteration final conc std dev final conc std dev

none 20000 665.91 15.2 433.99 15.22
E1 20000 662.98 16.99 433.96 16.79
E2 20000 664.07 18.18 432.54 18.08
E3 20000 593.13 19.57 506.65 19.57
E4 20000 703.34 17.75 396.55 17.78
E5 20000 702.38 16.04 397.55 16.05
E6 20000 666.49 17.14 433.43 17.15
E7 20000 625.04 17.38 474.85 17.38
E8 20000 686.48 18.56 413.45 18.56
E9 20000 685.93 15.28 413.95 15.3
E10 20000 579.69 17.07 520.16 17.03
E11 20000 666.67 16.32 433.27 16.34
E12 20000 752.11 14.11 347.71 14.08
E13 20000 445.35 16.84 651.88 16.74
E14 20000 886.63 11.03 210.4 10.94  

 

Table 6: Deletion of two edges simultaneously and compared for isodynamicity. 
Simulations performed for constant 20000 iterations. Final concentrations given in cellular 
automata cells with corresponding standard deviation for Caspase 6 and DFF40. 
 
Double Deletion CASP6 DFF
Links removed iteration final conc std dev final conc std dev

E8/E9 20000 725.48 15.12 374.36 15.12
E8/E11 20000 684.07 16.39 415.83 16.39
E9/E11 20000 686.96 17.34 412.95 17.33
E5/E9 20000 723.53 16.37 376.3 16.32
E2/E8 20000 669.79 16.01 426.93 16.05
E1/E6 20000 664.56 16.66 432.05 16.65
E1/E4 20000 686.45 16.18 409.83 15.83
E1/E8 20000 699.58 15.48 396.98 15.19  
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Table 7: Deletion of single nodes and compared for isodynamicity. Simulations performed 

for constant 20000 iterations. Final concentrations given in cellular automata cells with 

corresponding standard deviation for Caspase 6 and DFF40. 

 
Node Deletion CASP6 DFF
Node removed iteration final conc std dev final conc std dev

2 20000 599.37 16.31 399.52 16.25
3 20000 597.15 16.03 401.74 15.97
5 20000 674.34 15.33 325.64 15.34
6 20000 675.95 15.88 324.04 15.9  

 

Analyzing tables 5, 6 and 7, tremendous amount of isodynamicity was revealed in 

the FAS-L induced apoptosis network by CA simulations. Hence the motivation to study 

FAS-L network in detail using CA, was the complexity presented by this network and the 

ability of CA to elucidate this complex behavior. The regulatory control of this pathway 

which leads to successful apoptosis in normal circumstances can be altered in some 

conditions as cancer, leading to such cells evading apoptosis and proliferating 

uncontrolled. This regulatory mechanism offers two different opportunities to fight cancer. 

Both the strategies were modeled using CA 

 

3.3.2 Modeling FAS-L apoptosis pathway using CA 

 

The strategy of blocking the apoptosis in the immunological response of T-cells by 

maximizing the inhibitor action of FLIP (flagellar biosynthesis protein) [82-88] and IAP 

(inhibitor of apoptosis) [89, 90], either individually or jointly [80] was simulated. IAPs are 
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characterized by the presence of between 1 and 3 specific domains called baculoviral 

repeats (BIRs), which are directly involved in their caspase-inhibitory activity. FLIP acts 

by attaching to DISC (death-inducing signaling complex), which blocks the activation of 

CASP8 and CASP10 (See Fig. 17).  The DISC complex thus acts as a mechanistic switch 

to regulate apoptosis. The very process of DISC formation is a highly regulated and 

delicately balanced process. It includes formation of a FAS-FAS dimer and FADD 

association with the FAS dimer, followed by Caspase 8 and Caspase 10 recruitment and 

activation. The binding between FAS-FAS dimer, and that between FAS dimer and FADD, 

is shown to be weak [91-93] so as to prevent accidental activation of apoptosis, and to 

proceed to formation of DISC complex only in the case of strong stimulus. DISC consists 

of a lattice of FAS dimer and FADD. The sequence of elementary steps of this complex 

mechanism is described in detail in the Experimental Part section. 

 This simulation approach was first tested by comparing the apoptosis process in 

cancer and normal tissue (based upon microarray gene expression data taken from [94]). 

As shown in Fig. 19, the DFF40 protein, which starts the process of DNA decomposition, 

is considerably suppressed in cancer cells, relative to non-cancerous cells.  The very broad 

range of transition probabilities for releasing DFF40 under the influence of effector 

caspases (CASP3 and CASP7), is consistent with the model. 
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Fig. 19. The strong suppression of apoptosis in cancer cells as compared to normal cells 
(expression data for the FASL-induced apoptosis from [28]) is reproduced by the cellular 
automata simulation within a very broad range of values of the transitional probability for 
releasing the DNA "killer" DFF40.  
          

The strategy for fighting cancer by helping the immune system to restore its 

response by blocking apoptosis in the immune system T-cells was simulated by varying the 

potency of FLIP and IAP inhibitors. This was modeled by varying the transition 

probability for each inhibitor, with an increase in the probability value correlating to a 

higher inhibitor potency. As seen in Fig. 20, when the two inhibitors were used jointly, the 

resulted concentration of DFF40 was considerably lower than the one expected from a 

summing up of the individual effects of each inhibitor. Thus our model predicts a 

considerable synergy in the joint action of the two inhibitors. 
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Fig. 20. Synergistic effect during joint suppression of the apoptotic process by the FLIP 
and IAP inhibitors. This finding might be of interest in developing clinical treatments 
preventing the killing of the immune system T-cells by cancer cells.  
     

The classical strategy to fight cancer by inducing apoptosis in cancerous cells was 

simulated by maximizing the DFF40 expression level. This was achieved by modulation of 

the FLIP and IAP inhibitors of apoptotic process performed by varying the transitional 

probability for their suppressors siRNA and SMAC (Fig. 17). The benefits of simultaneous 

suppression of the two apoptosis inhibitors, FLIP and IAP, by siRNA and respectively 

SMAC, are demonstrated in Fig. 21 with the almost complete release of DFF40 from the 

synergy of the two models of apoptosis modulation. Although FLIP is a stronger inhibitor 

than IAP by acting on the first part of the signaling cascade, its silencing cannot enable full 
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scale apoptosis. Only the joint suppression of both inhibitors (FLIP and IAP) was able to 

kill target cancer cell through apoptosis. 

 

Fig. 21. Simulating the effect of FLIP and IAP inhibitors suppression by siRNA and 
SMAC, respectively. The values of the DFF40 steady state concentration after 25000 
model iterations enable prediction that a full-scale FAS-ligand induced apoptosis is 
achievable only via joint synergistic suppression of FLIP and IAP inhibitors. 
                       

Building upon these simulation results, a more complete model of apoptosis was 

created by integrating the FAS-ligand-induced apoptosis pathways with the endogenous 

mitochondria-activated apoptosis pathways. Cells undergoing apoptosis by FASL mediated 

pathways are called type I, while those committing suicide by the mitochondria-mediated 

cascade are classified as type II [80, 85]. Apoptosis of type I cells requires high expression 

of caspase 8 (CASP8), while apoptosis of type II cells proceeds at low levels of caspase 8. 

In the case of type II cells, caspase 8 activates the Bid protein, which in turn activates the 
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mitochondria mediated apoptosis pathway (Fig. 22). CASP8 thus acts as a switch between 

type I and type II cells. The mode of action for the mitochondria mediated apoptosis 

pathway is that mitochondria releases cytochrom C into the cytoplasm activating caspase 

9, which then closes the apoptosis chain by activating caspase 3. In addition, a feedback 

loop from caspase 3 to caspase 9 to IAP has been hypothesized [95-97] that deactivates 

IAP. 
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Figure 22. Combined action of the exogenous (FASL-induced) and the endogenous 
(mitochondria-induced) apoptosis pathways that is active or inactive depending upon the 
expression level of CASP8.  The mitochondria releases cytochrome C in the cytoplasm, 
which activates CASP9, which in turn activates CASP3 merging thus to the FAS-cascade. 
A feedback from CASP3 to CASP 9 [95-97] increases the concentration of CASP9 active 
form, which accelerates apoptosis by suppressing the inhibition from IAP 
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Figure 23. Adding a feedback loop to the mitochondria mediated apoptosis pathways does 
not increase the DFF40 concentration, which is close to the maximal one needed for DNA 
decomposition, but speeds up the apoptotic process. 
            

As seen in Figure 23, adding the feedback loop CASP3  CASP9 --| IAP to the 

mitochondria mediated apoptosis pathway did not produce major changes in the 

concentration of DFF40. DFF40 was still present at sufficiently high levels for a cell to 

undergo apoptosis. Our model predicts that the real benefit of this feedback is that the 

overall signaling process is in speeding up the process from 7300 to 5600 iterations, due to 

enhanced suppression of inhibitor IAP and extra activation of CASP9. 

Figure 23 presents the chance to compare the dynamics of the intrinsic mitochondria 

mediated apoptosis pathway (with a feed-back and without it) to that of the extracellular 

FASL-induced apoptosis. Our simulation shows that FAS-L is 32 % faster than 

mitochondrial feed forward and 12 % faster than mitochondrial feed-forward + feed-back 

(The number of iterations for the FASL apoptosis is 5012±11.7, vs. 5596±11.1 and 
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7368±13.0 for the mitochondrial apoptosis with and without feedback, respectively). This 

relates apoptosis in type I and type II cells apoptosis in the following manner. Depending 

on the urgency to carry out apoptosis, cell may control the expression of caspase 8 by 

using lower levels of CASP8 to activate the mitochondrial mediated pathway and higher 

levels to activate FASL pathway. In the event of a failure of the mitochondria mediated 

apoptosis pathway due to damage, caspase 8 could be highly expressed to respond to a 

FASL stimulus. On the other hand, failures in the FASL apoptosis pathway (such as no 

DISC formation or mutated membrane bound FAS, etc.) could be compensated by 

switching on the mitochondrial pathway with feedback, which is only 12% slower at about 

the same DFF40 concentration. Thus, there is built in biological redundancy to activate 

apoptosis where the different pathways have a similar (but not identical) signal 

transduction speed controlled by CASP8. This indicates the need of further modeling 

studies on controlling caspase 8 as toggle switch between intrinsic and extrinsic pathways.  

 

3.4 Conclusions 

 

This study of FAS-L induced apoptosis focused on two primary objectives; to 

activate apoptosis in cancer cells and to inhibit apoptosis in normal cells in order to fight 

cancer. The goal of activating apoptosis was achieved by simultaneously inhibiting the 

inhibitors of the apoptosis, FLIP and IAP by siRNA and SMAC respectively which 

produced significant amount of DFF40 required for proceeding to apoptosis. It was shown 

that individual inhibition of inhibitors is not sufficient and hence synergistic inhibition is 
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proposed as most effective strategy to activate apoptosis mechanism [98, 99]. The problem 

of inhibiting apoptosis in immune system cells can be addressed by simultaneously 

inducing the expressions of inhibitors of apoptosis, FLIP and IAP, sufficient so as to block 

the caspase cascade mechanism from going forward. We propose this as the most effective 

strategy for sensitizing cancer cells for chemotherapy. It is evident that lower expression of 

caspase 8 is enough to trigger the mitochondrial pathway while FAS-L induced apoptosis 

requires higher levels of caspase 8. In the case of higher caspase 8 concentration the 

mitochondrial pathway does not produce significant change in the concentrations of 

DFF40 but in case of failure on the part of intrinsic apoptosis mechanism due to damaged 

mitochondria, the cells can be induced to express higher levels of caspase 8 to activate the 

extrinsic pathway as a rescue mechanism. These findings can prove pivotal in identifying 

drug design targets and required expression levels of specific proteins to suggest drug 

design strategies to fight cancer and HIV infection.  
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CHAPTER 4 MODELING CELLULOSE HYDROLYSIS 

 

 

 

4.1 Introduction 

 

In all the models studied so far, the strength of CA modeling was evident in 

modeling complex network structure with easy and accurately predicts the dynamics of 

such networks. Another strength of CA, its ability to account for physical considerations, 

can be applied to model cellulose hydrolysis of cellulytic bacteria. In cellulose hydrolysis, 

there are many stochastic events such as release of cellulase enzymes, binding of cellulase 

and bacteria to cellulose and random movements of bacteria and cellulose. These processes 

take place on different temporal scales. CA is well suited to capture evolution of such a 

system with multiple temporal scales due to its ability to confer individuality to every 

component of the system. This allows different reactions with different rates to occur 

simultaneously contributing to the overall system evolution. Hence choice of CA was 

natural to model cellulose hydrolysis. 
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4.2 Background 

 

Cellulolytic bacteria express cellulases, enzymes that hydrolyze cellulose, for 

breaking down cellulose into glucose and cellobiose to be used as energy source in the 

absence of usual glucose sources [100-103]. The cellulosic biomass is hydrolyzed by 

enzymes in a coordinated manner involving synergistic actions of different types of 

cellulases such as exogluconases, endoglucanases and beta-glucosidases along with 

hemicellulases and accessory proteins. Different cellulytic bacteria have been shown to 

possess two different enzyme systems of cellulose hydrolysis viz. complexed and non-

complexed [104, 105]. Organisms with complexed systems form a complex structure on 

their cell walls called cellulosome. All the required cellulases are expressed in the 

cellulosome instead of secreting them in the outer cellular matrix. These organisms then 

attach to cellulose with the help of dockerin proteins and hydrolyze cellulose. On the other 

hand, organisms with non-complexed enzyme system, secret cellulases freely in the outer 

cellular space to degrade cellulose. Cellulose is a long polymer made up of cellobiose 

which in turn is composed of two glucose molecules. These cellobiose molecules form the 

building blocks of cellulose. Cellulose chains can vary between few hundred to few 

thousand cellobiose units depending on the biomass. Structurally cellulose consists of an 

amorphous core with crystalline cellulose forming the reducing and non reducing ends. 

Endoglucanases are shown to hydrolyze the amorphous center while exogluconases 

degrade the reducing and non reducing ends. Beta-glucosidases usually hydrolyze smaller 

chains of cellulose made up of six or fewer cellobiose units [100]. 
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It is believed that organisms having complexed cellulose hydrolysis enzyme 

systems degrade cellulose more efficiently that non-complexed organisms. This is made 

possible due to the fact that all enzymes required for cellulose degradation are available in 

the cellulosome. This close physicality thus enables complexed organisms to achieve better 

efficiency at degrading cellulose. Hence a model of cellulose hydrolysis by complexed and 

non-complexed enzyme systems to evaluate the efficiency of the two systems irrespective 

of the underlying characteristics of a particular organism was built. Some organisms are 

shown to possess both the systems together where they express almost all of the cellulases 

in cellulosome and also secrete few cellulases in outer cellular matrix [106]. This fact was 

also taken into consideration while comparing enzyme systems and effects of having both 

enzyme systems was evaluated. 

 

4.3 Methods 

 

The agent based modeling (ABM) method was used to study cellulose hydrolysis. 

The model was built using Netlogo version 4.1RC5, October 13, 2009 [107]. Following 

assumptions were made while constructing the model. 

Initially, the idea for modeling the two different enzyme systems can be seen in 

figure 24. 
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Figure 24: The initial scheme for cellulose utilization model. A represents noncomplex, B 
is complexed and C is a hybrid enzyme system for cellulose utilization. 
 

Here, the complexed and hybrid systems were thought to be modeled as a two 

compartment system while non-complexed system as a single compartment. But the 

compartmentalization proved to be very difficult to model using CA, as it required some 

editing of the CASim simulator. ABM offered the possibility to model complexed system 

with two compartments but only one such bacterial cell was possible to be shown making 

the model not comparable with non-complexed system. 
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Another attempt was made to model the complexed system assuming the metric 

sides as cell walls and having the cellulases fixed on the walls forming enzyme clusters. 

This resolved the issue of having single bacterial cell in complexed system but raised other 

issues. This scheme was not biologically realistic as cellulases have no movement in this 

model while cellulose with much bigger mass was the only moving component in the 

system. In reality cellulose moves much slower than the cellulase and bacteria as its 

volume is an order of magnitude greater than cellulases. This again makes the two models 

for complexed and non-complexed systems incomparable. 

These issues are addressed in the current version of the model where in case of 

complexed system the cellulytic bacteria are assumed to have already expressed the 

enzyme clusters on their cell walls and move faster than the cellulose. These bacteria can 

then attach to cellulose and start hydrolysis. To make the non-complexed system 

comparable, it is built with a “enzyme release rate” parameter which compensates the 

advantage of complex system by having cellulases already expressed on the cell wall. 

 

4.3.1 Model Assumptions: 

 

1) Hydrolysis is the rate limiting step in cellulose break down [108, 109]. Hence activity of 

cellulases is comparable in cases of complexed and non-complexed enzyme systems. 

2) All movement and interactions are random. 

3) Cellulase enzymes have a “half-life”, currently equal to 100 time steps. 

4) Presence of cellulose has no effect on movement of bacteria. 
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5) There is no preferential reattachment of complexed bacteria. 

6) Rate of cellulose degradation of cellulases is equal regardless of enzyme system. 

7) Order of release of particular type of enzyme in non-complexed system is random and 

enzyme concentrations throughout the simulation are based on initial concentration ratios. 

 

4.3.2 Parameters 

 

Many parameters affecting cellulose hydrolysis were taken into consideration. 

1) Cellulose Related Parameters 

Number of cellulose chains and their lengths can be adjusted in the model. Considering the 

fact that larger chains of cellulose will be less mobile in a solution compared to smaller 

chains, cellulose movement was set inversely proportional to its size to mimic the chain 

length effect. 

2) Enzyme Related Parameters 

Enzyme activity for non-complexed and hybrid system can be controlled by setting the rate 

at which cellulases are released from cells. For the same cases, ratios for enzyme 

compositions can also be set which can mimic the actual physiological expression levels of 

organisms. A “half-life” can also be set for enzymes to mimic their biological behavior in 

outer cellular matrix. The activity of enzymes is controlled by their interaction probability 

which defines how probable it is for an enzyme to hydrolyze cellulose if interaction is 

possible by physical closeness. 

3) Organism Related Parameters 
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Behavior of the organisms can be controlled by setting their population and probability of 

intake for particular type of sugar molecules. 

 

4.4 Results and Discussion 

 

4.4.1 Effects of Initial conditions 

Initial conditions of any ABM can greatly affect the steady state of the model 

making it difficult to predict outcome. To assess the effects of bacterial concentration on 

model predictions, number of cells was varied between 10 and 100 in steps of 10. As seen 

in figures 25A, 26A and 27A, time steps required for complete break down of cellulose 

varies greatly with low starting concentration of bacteria. Standard deviation was measured 

for these simulations and it is evident from figures 25B, 26B and 27B for standard 

deviations that the randomness induced in the system due to low bacterial concentrations, 

decreases with increasing bacterial concentration, and standard deviations are steadily 

decreasing after increasing bacterial concentration beyond 60 cells. Hence a bacterial 

concentration of 60 was chosen for further simulations. 
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Initial Condition Experiments - Complexed Cellulase System
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Standard Deviation for Initial Condition Experiments - Complexed Cellulase System
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Figure 25: A) Effects of initial conditions on complexed cellulase enzyme system. 
Varying bacterial cell concentration from 10 to 100 in steps of 10. B) Standard deviation 
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Initial Condition Experiments - Non-complexed Cellulase System
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Standard Deviation for Initial Condition Experiments - Non-complexed Cellulase System
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Figure 26: A) Effects of initial conditions on non-complexed cellulase enzyme system. 
Varying bacterial cell concentration from 10 to 100 in steps of 10. B) Standard deviation 
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Initial Condition Experiments - Hybrid Cellulase System
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Standard Deviation for Initial Condition Experiments - Hybrid Cellulase System
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Figure 27: A) Effects of initial conditions on hybrid cellulase enzyme system. Varying 
bacterial cell concentration from 10 to 100 in steps of 10. B) Standard deviation 
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4.4.2 Effects of rate of enzyme release 
 

To make the expression of enzymes in non-complexed system comparable with the 

complexed system, rate of enzyme release was assessed by increasing the rate from 10 to 

100 in steps of 10 followed by statistical analysis to set the enzyme release rate for non-

complexed system such that both the systems perform equally while hydrolyzing cellulose. 

The comparable rate was found to be 60. 

 

4.4.3 Effects of simulating real bacterial enzyme ratio 

Published data [110-113] shown in table 8 for the ratios of cellulases in Cellulytic 

organisms was used to assess whether having a particular system is beneficial for the 

organism to hydrolyze cellulose. Interaction probability of an enzyme to hydrolyze 

cellulose upon encounter is kept 0.5 for all enzymes to make the enzyme action 

comparable within all system. In the case of C. thermocellum with hybrid system, an 

enzyme production rate of 10% (6 compared to 60 for other organisms) was used based on 

the fact that only 2 putative non-cellulosome bound cellulases are expressed in C. 

thermocellum as compared to expression of about 20 different cellulases in other 

organisms, which is about 10 % [106, 111-113]. 

 
Table 8. Cellulase enzyme ratios used for simulating bacterial enzyme systems 
 

 
T. 
fusca 

T. 
reesei 

C. thermocellum-
hybrid 

C. thermocellum-
complexed 

Exoglucanases 70 80 40 0 
Endoglucanases 20 15 60 0 
Beta-glucosidases 10 5 0 0 
enzyme interaction probability 0.5 0.5 0.5 0 
enzyme production rate 60 60 6 0 
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An F-test was conducted to test the null hypothesis stating that “There is no 

difference hydrolyzing cellulose due to particular enzyme system” The results for F-test 

are presented in table 9. 

Table 9: Performance of bacterial cellulase systems hydrolyzing cellulose 

Organism Runs Average* Variance Deviation 

T. fusca 200 302.93 7247.985 85.135 

T. reesei 200 280.045 5622.636 74.984 

C. thermocellum Hybrid** 200 190.345 6650.066 81.547 

C. thermocellum Complexed 200 188.015 4246.658 65.166 
* Average number of iterations required to completely hydrolyze cellulose over 200 
repetitions 
** C. thermocellum treated as hybrid by expressing non-cellulosome bound cellulases 
 

From table 9 it is evident that T.fusca and T.reesei, organisms that possess non-

complexed enzyme system require almost 100 iterations (nearly 50 %) more than 

C.thermocellum which as a complexed enzyme system. Allowing C.thermocellum to 

secrete cellulases in the outer cellular matrix in addition to its complexed enzyme 

system takes almost equal amount of iterations for cellulose hydrolysis, which is also 

evident from the F statistic. But the statistical analysis of these four simulations does 

not support the averages strongly. In spite of having very close average performance, 

the F statistic shows T.fusca and T.reesei to be different followed by differentiating 

C.thermocellum treated as complexed and hybrid. On the other hand T.fusca and 

C.thermocellum hybrid systems are shown as performing similar by the F statistic. 
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Tables 10 and 11 summarize the statistical simulation results for the bacteria T.fusca, 

T.reesei and C.thermocellum. 

Table 10: F-test summary of bacterial systems with each other 

 

Organism T. fusca T. reesei C. thermocellum Hybrid 
C. thermocellum 
Complexed 

T. fusca  
1.26334* 
1.2890** 

1.26334* 
1.089912** 

1.26334* 
1.70675** 

T. reesei   
0.791552* 
0.845501** 

1.26334* 
1.324014** 

C. thermocellum H    
1.26334* 
1.565953** 

C. thermocellum C     
* F critical one tail 
** F value 
 
 
Table 11: Comparison summary of bacterial systems with each other 
 

Organism T. fusca T. reesei C. thermocellum H C. thermocellum C 

T. fusca  different same different 

T. reesei   different different 

C. thermocellum H    different 

C. thermocellum C     
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4.4.4 Effects of cellulase ratio 
 

After simulating real bacterial enzyme ratios, simulations were performed to query 

the best performing ratio of cellulases. It is known from published data that concentration 

of beta-glucosidase does not go beyond 20% [110-113]. Hence three different series of 

simulations were performed reducing concentration of beta-glucosidase in steps of 10 from 

20 to 0 and holding it constant for each series. The remaining percentage of concentration 

was divided among endoglucanases and exoglucanases increasing and decreasing the 

concentrations simultaneously. As seen in figure 28, efficiency of the enzyme system 

increases with increasing endoglucanase and decreasing exogluconase at constant beta-

glucosidase and vice versa. All the three series show high correlations for the trend 

established for iterations required to hydrolyze cellulose.  

Figure 28: Iterations required for changing ratios of exogluconase and endoglucanase at 
constant beta-glucosidase. 
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4.5 Conclusions 

 

The focus of this study was to build model of different cellulase enzyme systems 

employed by Cellulytic bacteria to hydrolyze cellulose and evaluate them on the basis of 

efficiency hydrolyzing cellulose. To make the model realistic, effects of initial conditions 

were assessed, and it can be concluded that the initial conditions greatly affect the model 

outcome. As the cells are placed randomly in the grid while starting the simulation, 

physical closeness to begin with can greatly decrease the number of iterations required to 

achieve complete hydrolysis. A high enough initial concentration of cells can make the 

model predict the performance of a system more accurately. Though the average number of 

iterations for cellulose hydrolysis for complexed and non-complexed systems shows 

significant difference, it is not substantiated by statistical tests which give mixed results 

while differentiating the two enzyme systems. Hence it can not be concluded based on this 

data alone that there exists a significant difference in the efficiency of these enzyme 

systems. The efficiency of hydrolysis could be more dependent on particular organism, its 

expression capabilities and specific characteristic of its cellulases rather than depending 

alone on the type of cellulase enzyme system. On the other hand, the test statistics agree 

with the average number of iterations showing no significant different between complexed 

cellulase systems vs. having both complexed and non-complexed together. Hence it can be 

concluded that there is virtually no difference between these systems with regards to 

efficiency at hydrolyzing cellulose.  
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From the results of testing different enzyme ratios it can be said that in the case of 

no beta-glucosidase in the system, endoglucanase concentration is directly proportional to 

efficiency while exoglucanase concentration is inversely proportional (R2 = 0.97). 

Examining the three series, beta-glucosidase concentrations of 10 and 20 show reasonable 

trend (R2 = 0.71 and R2 = 0.76) for above mentioned relationship. This can be explained by 

the fact that by randomly cutting the amorphous sites, endoglucanases are producing 

shorter cellulose chains and exposing more reducing and non reducing cellulose ends in the 

process. It is then easy to determine the optimum cellulase ratio which could be 99% 

endoglucanase followed by 1% exogluconase and 0% beta-glucosidase if integer values are 

used for enzyme proportions. As exogluconases are essential for hydrolyzing reducing and 

non-reducing ends, 100 % endoglucanase is not a feasible solution. 

These results, especially the suggested optimal enzyme proportions, can be useful 

while designing stains of cellulytic organisms for industrial purposes. Experiments can be 

designed to precisely control the expression of cellulase enzyme genes in cellulytic 

bacteria to verify these findings and suggest a biologically feasible optimal cellulase 

composition.  
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CHAPTER 5 DESIGN AND DEVELOPMENT OF ALGORITHMS TO DETECT 

MUTATIONS IN BACTERIAL GENOME 

 

5.1 Introduction 

 

The aim of the algorithm development work was to detect and study mutations in 

bacteria grown over several generations and differentiate them from randomly occurring 

mutations. Two different organisms namely E.coli and T.fusca were sequenced using next 

generation sequencing technology, Solexa Genome Analyzer [114]. Two E.coli strain 

designs grown in replicate were optimized for maximum lactate production and maximum 

growth using flux balance analysis [115-117]. These were then grown on minimal media 

for 60 days. Two T.fusca strains, one grown on minimal media with cellobiose and the 

second strain was switched to glucose from cellobiose and both grown for 40 days [117]. 

These enzymes, termed cellulases, are not expressed when glucose is available as energy 

source. 

The above mentioned strains were run on 8 lanes Solexa Genome Analyzer and the 

output files generated were analyzed for mutations by designing algorithms. The software 

employed to achieve this task includes mom-0.2 [118], Python and Matlab. 

 



www.manaraa.com

96 

5.2 Algorithms 

 

Figure 29 shows the flow of logic for the design and development procedure of the 

algorithm development process. Output from solexa genome analyzer was used an input to 

extract the raw sequences using sequence extraction algorithm designed in Matlab. These 

raw sequences were then used by MOM-0.2 re-sequencing software producing the output 

shown in table 12. MOM-0.2 output was then used to generate the mutations and coverage 

tables which led to mutation and coverage analysis. 
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Figure 30. Logic flow for the algorithms to detect mutations 
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5.2.1 Extraction of RAW sequences 

 

As MOM-0.2 can accept sequences only in “fasta” or “RAW” format, the output 

from Solexa Illumina was converted into RAW sequences by removing the quality scores 

and retaining only the sequence reads. The Matlab code for this procedure is included in 

the appendix B. A snapshot of output generated by Solexa Illumina can be seen below, 

@HWI-EAS102:2:1:0:361#0/1 
NAGCGCGTGCAGTGGGCATTGACCAAAGCCGCATTGTG 
+HWI-EAS102:2:1:0:361#0/1 
DLSTUSOSUTRTSMJOSTUQKQPSTSRBBBBBBBBBBB 
@HWI-EAS102:2:1:1:156#0/1 
NATAACCCCAGATCGGCGTACCCCCAATACATCCCACT 
+HWI-EAS102:2:1:1:156#0/1 
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB 
@HWI-EAS102:2:1:1:784#0/1 
NCATAGCAACGCGCCAGGTTGTCCTGCAGCGGGCGGAC 
+HWI-EAS102:2:1:1:784#0/1 
DNTUSSSSSUTUSSTSPKQSSSSSRPRBBBBBBBBBBB 

  

After applying the algorithm, Solexa output will be converted into raw sequence 

reads and look like following, 

NAGCGCGTGCAGTGGGCATTGACCAAAGCCGCATTGTG 
NATAACCCCAGATCGGCGTACCCCCAATACATCCCACT 
NCATAGCAACGCGCCAGGTTGTCCTGCAGCGGGCGGAC   
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5.2.2 Re-sequencing with MOM-0.2 

 

The mom-0.2 software compares the query sequence with reference genome and 

produces output file containing mutation information for each read. A sample MOM-0.2 

output can be seen in table 12,  

 

Table12. Sample mom-0.2 output. 
 
MOM-0.2 output fragments Explanation 

Fong_sample2_s_2_sequence_04_24_09_output.txt:1 Read ID 

NAGCGCGTGCAGTGGGCATTGACCAAAGCCGCATTGTG Matching Read Sequence 

U1 Match Type 

0 Number of 0 mismatches 

1 Number of 1 mismatches 

0 Number of two mismatches 

gi|48994873|gb|U00096.2| Escherichia coli str. K-12 substr. 

MG1655 complete genome 

The FASTA id  

of the matching reference sequence 

3905971 Match Position 

R Reading Direction 

1G Mismatch base and position within read 
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5.2.3 Building base call and mutation table 

 

Mutations for the whole genome from the mom-0.2 output file need to be 

summarized before analysis. This is achieved by reading mom-0.2 output file line by line 

and extracting information for base calls. It is then compared with the call for each base in 

the reference genome. This information is then converted into base call table which will 

consist of total number of calls for each nucleotide for each base followed by the base with 

maximum call and the reference call for that particular base position. Using this base call 

table, a mutations table is built only for those positions which include a mutation flag (U1, 

U2….) in the mom-0.2 output. Different types of mutation flags are used in mom-0.2. A 

mutation tag starting with “U” means a unique match for the read sequence. It is then 

followed by a number, 0 for a 100 % match and higher numbers suggesting that many 

mismatching bases. In case of multiple matches with the reference genome subsequent 

fields containing number of matching sequences with number of mismatches below the 

allowable mismatches are populated. Mutations table is similar to base call table except 

that it only consists of bases with a different maximum nucleotide call from reference 

genome. A third table built with this algorithm will consist of only entries exceeding 75 % 

of mismatch criteria with the reference genome along with the coverage for that nucleotide 

in the Solexa output [119]. The Matlab and Python codes for this procedure are included in 

the appendix B. 
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5.2.4 Gene search 

 

As the mom-0.2 output contains reference to the fasta ID of reference genome, 

names of genes with mutations can be extracted by querying the reference genome with 

base position of mutation or by using the fasta ID from mom-0.2 output. The Python code 

for these procedures is included in the appendix B. 

 

5.2.5 Coverage analysis 

 

After building the base call and mutations tables it becomes easy to perform whole 

genome coverage analysis. It is important to calculate the coverage for each position in 

genome as higher coverage indicates a higher probability that the mutations detected are 

true. The algorithm for calculating coverage simply iterates through the entire base call 

table and counts the total number of times a base has a nucleotide call, either matching the 

reference or not. A table for coverage between 1 and 100 was built. Coverage analysis also 

shows what proportion of the total genome is not covered in the re-sequencing runs. The 

quality of re-sequencing can also be judged from average coverage of the entire genome. 

Hence two more procedures for calculating average and maximum coverage were added to 

the algorithm. The Python codes for these procedures are included in the appendix B. 
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5.3 Results and discussion 

 

5.3.1 Coverage 

 

Table 13 shows the amount of whole genome coverage. As an E.coli genome is 

about 4.6 million bases, about 400,000 bases are not at all present in the re-sequencing. 

Also, only about 60 % of the genome re-sequenced is above acceptable coverage threshold 

assuming that a threshold of 30 fold coverage is sufficient for the results to be treated 

authentic.  

 

Table 13. Genome coverage for sample 1***. 
 
Coverage* Bases** 
1 4229283 
5 3972341 
10 3667977 
15 3373049 
20 3091257 
25 2822475 
30 2573707 
35 2340549 
40 2126054 
45 1926874 
50 1745895 
55 1581229 
60 1429366 
80 951782 
100 632796 

* Fold coverage for each base, ** Bases with specified and above coverage 
*** E. coli re-sequenced whole genome 
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5.3.2 Mutations 

 

Table 14 shows the mutations detected by the algorithms in sample 1. Results are 

produced for combinations of coverage and percentage of total calls which favor mutation 

in the base. A threshold of at least 75 % was set for a mutation to be called.
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Table 14. Detected mutations for sample 1. 

Coverage* %** Mutations***
1 0.75 284 
1 0.8 261 
1 0.85 240 
1 0.9 220 
1 0.95 202 
1 1 200 
5 0.75 139 
5 0.8 119 
5 0.85 98 
5 0.9 78 
5 0.95 60 
5 1 58 
10 0.75 103 
10 0.8 87 
10 0.85 73 
10 0.9 57 
10 0.95 39 
10 1 37 
15 0.75 75 
15 0.8 59 
15 0.85 50 
15 0.9 35 
15 0.95 24 
15 1 22 
20 0.75 47 
20 0.8 37 
20 0.85 31 
20 0.9 20 
20 0.95 14 
20 1 12 
25 0.75 27 
25 0.8 20 
25 0.85 18 
25 0.9 9 
25 0.95 5 
25 1 4 
30 0.75 17 
30 0.8 13 
30 0.85 11 
30 0.9 5 
30 0.95 2 
30 1 2 
* Fold coverage for each base, ** Percentage of base calls in favor of mutations 
*** Number of mutations detected at specified coverage and percentage 
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5.4 Conclusions 

 

This re-sequencing study was conducted to detect mutations in the bacterial 

genome and identify them differently with high confidence from the re-sequencing errors. 

This goal was achieved by using threshold criteria for coverage and percentage of 

mismatch calls. It is difficult to set fixed criteria with regards to both the criteria 

parameters mentioned above as it can vary from genome to genome and depends more on 

the methods ands precautions used while running the re-sequencing experiments. But in 

general, a coverage of 30 or above and percentage mismatch of 85 or above seem 

reasonable criteria to have high confidence in making a mutation call for the eight different 

re-sequenced samples studied in this section. 
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CHAPTER 6 CONCLUSIONS 

 

 

Most of the work contained in this dissertation is centered on development of a 

computational method to capture the essence of dynamics of biological systems which are 

otherwise difficult to capture due to greater amount of complexity encountered while 

modeling these systems. Many modeling methods currently exist to simulate biological 

systems. Sometime or other while using these methods one has to compromise on some 

aspects of the system such as level of details to be included in the model in order to reduce 

the complexity involved. Approximations are often used to deal with these complex 

biological systems which often miss out, in my opinion, on the important micro-dynamics 

of the system which eventually decide the system’s temporal evolution. Many biological 

systems are stochastic in nature with different scales of temporal dynamics which further 

limits the ability to build a model which can accurately predict the emergent behavior of 

biological systems. Modeling methods which can actually account for molecular level 

details are limited into their application to model system level dynamics due to the 

extraordinary number of components that make living organisms.  
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After working for over four years in systems biology, my goal while modeling a biological 

system is to understand the holistic nature of the system under question rather than 

characterizing each individual component. This “big picture” provides general 

understanding about the functioning of the system and allows capturing the essential and 

interesting features of the system. In these regards, I have found the method of Cellular 

automata or agent based modeling more appealing than any other modeling methods. A 

basic knowledge about the working of a biological system, or any system for that matter, is 

sufficient on many occasions to model it using CA/ABM. Its strength lays in its simplicity 

to represent any kind of stochastic system with few basic rules or principles governing the 

dynamics of the system without overly emphasizing on spurious details. I agree with 

Stephen Wolfram on the idea that many complex behaviors originate from very simple and 

basic underlying rules which decide the temporal evolution of the system. Answers to 

many questions in biology can be found by following these simple governing principles in 

nature and cellular automata has shown its strength in successfully incorporating these 

basic design principles into system level models. 

Still, many shortcomings of CA modeling can be pointed out. Though the basic 

notion is to simulate a biological system as it appears in its natural setting, currently there 

exists hardly any simulation environment which can sufficiently account for the three 

dimensional biological environment. Hence mostly two-dimensional spaces are used to 

mimic three dimensional biological environments. Though two dimensional matrices 

appear to be sufficient at this point of time, the simulation can not be called 100 % realistic 

while using one less dimension. As modeling biological systems with CA is a relatively 
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new field, further interest in these type of modeling and advances in computer processor 

technology can greatly improve the chances of having a truly three dimensional modeling 

environment. A second major disadvantage is that CA modeling can not account for 

structural details of the components in a system making it relatively useless for modeling 

structural events like binding of proteins and other biological molecules. 

Different avenues exit to take the current research further with CA modeling. I 

would like to suggest a few directions in which I would like to advance the knowledge of 

biological systems, using cellular automata. Firstly, synthetic biology will benefit greatly 

with the concept of isodynamicity. Industrial organisms are used generation after 

generation and, therefore, evolution must be taken into account when designing biological 

circuits. Isodynamicity can contribute by endorsing desired characteristics to synthetically 

constructed strains. Strains can be designed to specifications by optimizing cost of gene 

expression, reaction rates, signaling responses, regulatory controls and robustness against 

random mutations by incorporating isodynamic networks in the biological circuit design 

process. Cellular automata simulations can be brought in along with traditional 

experimental research to evaluate the different synthetic circuit designs before 

implementation. A higher cost associated with testing all possible biological circuits via 

experiments can be significantly reduced by selecting best performing designs as suggested 

by cellular automata simulations. 

Secondly, the pivotal role of caspase 8 was shown as a regulatory switch between 

type I and type II cells. Lower concentrations of caspase 8 is sufficient to trigger 

mitochondria mediated apoptosis while higher concentrations of caspase 8 are required to 
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respond to the FAS-L induced apoptosis signal. Hence further simulations of CA will be 

designed with the goal to turn a type II cell into Type I cell by increasing the expression of 

caspase 8. This will allow cells with failed mitochondrial apoptosis machinery to carry out 

apoptosis via FAS-L induced apoptosis, establishing FAS-L as a alternative route for self 

induced death. Also to characterize fully the mitochondrial pathway, inhibitors of the 

BCL-2 family will be modeled in the simulations to test the synergy between intrinsic and 

extrinsic pathways. This will enable selective switching between different apoptosis 

mechanisms suggesting the role of other proteins of these pathways as new drug targets. 

The strength of CA/ABM modeling can be utilized best in conjunction with other types of 

modeling methods to create hybrid simulation platforms. Whole cell models then can be 

constructed by applying appropriate modeling methodology to candidate processes 

depending on the inherent nature of the process and capturing every possible spatial and 

temporal aspect of the system dynamics. 
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APPENDIX A 

Computer code for cellulose hydrolysis model written in Netlogo. 

globals [numberofchains wholist randiffusionexo randiffusionendo randiffusiongluco 
enzymeconstant decideenzyme celluloseidexo celluloseidendo celluloseidgluco 
celluloseate brokendown? brokendownflag number] 
 
breed [ celluloses cellulose ] 
breed [ bacteria bacterium ] 
breed [ bacteriaC bacteriumC ] 
breed [ bacteriaH bacteriumH ] 
breed [ endoglucanases endoglucanase ] 
breed [ exoglucanases exoglucanase ] 
breed [ B-glucosidases B-glucosidase ] 
 
celluloses-own [chain leader neighbour amileader mychainlength parent-xcor parent-ycor 
taken?] 
bacteriaC-own [stuck?] 
bacteriaH-own [stuck?] 
endoglucanases-own [birthTicks] 
exoglucanases-own [birthTicks] 
B-glucosidases-own [birthTicks] 
 
to setup  
  ca 
  ca 
  ca 
  setup-cellulose 
  setup-grid 
  setup-bacteria 
end  
 
to setup-cellulose  
  let j 1 
  set numberofchains CelluloseChains 
  repeat CelluloseChains 
  [ 
    create-celluloses 1 
    [ 
      set taken? false 
      set size 0.5 
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      set color brown 
      set shape "box" 
      setxy random-pxcor random-pycor 
      set chain j 
      set j j + 1 
      set leader [who] of self 
      set parent-ycor pycor 
      set parent-xcor pxcor 
      let i 1 
      ifelse RandomChain = false 
      [ 
        repeat CelluloseLength - 1  
        [ 
          hatch 1 [setxy parent-xcor + i parent-ycor decide-neighbour] 
          set i i + 1 
        ] 
      ] 
      [ 
        let ranChain random CelluloseLength 
        repeat ranChain 
        [ 
          hatch 1 [setxy parent-xcor + i parent-ycor set color brown decide-neighbour] 
          set i i + 1 
        ] 
      ] 
    ] 
  ] 
  ask celluloses 
  [ 
    check-ifiamtheleader 
    decide-neighbour 
    decide-chainlength 
    check-leader 
  ] 
  set celluloseate 0 
  set brokendownflag true 
end 
 
to setup-grid ; 
  ask patches 
  [ 
    set pcolor green 
  ] 
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end 
 
to setup-bacteria 
  if EnzymeSystem = "NonComplexed" 
  [ 
    create-bacteria BacteriaConcentration [set color red set size 1 set shape "bug" setxy 
random-pxcor random-pycor] 
  ] 
  if EnzymeSystem = "Complexed" 
  [ 
    create-bacteriaC BacteriaConcentration [set color red set size 1 set shape "bug" setxy 
random-pxcor random-pycor] 
  ] 
  if EnzymeSystem = "Hybrid" 
  [ 
    create-bacteriaH BacteriaConcentration [set color red set size 1 set shape "bug" setxy 
random-pxcor random-pycor] 
  ] 
   
end 
 
to go 
  if not any? celluloses with [mychainlength > 1] 
  [ 
    set brokendown? true 
  ] 
  if brokendown? = true and brokendownflag = true 
  [ 
    output-print (word "All cellulose broken down at:" ticks) 
    set brokendown? false 
    set brokendownflag false 
  ] 
  ifelse GlucoseIntake = true 
  [ 
    if celluloseate * 100 / (CelluloseLength * CelluloseChains) >= StopAtIntake 
    [ 
      output-print (word "cellulose intake complete at:" ticks) 
      stop 
    ] 
  ] 
  [ 
    if not any? celluloses with [mychainlength > 1] 
    [ 
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      stop 
    ] 
  ] 
  ask endoglucanases 
  [ 
    if Ticks - birthTicks > halflife 
    [ 
      die 
    ] 
  ] 
  ask exoglucanases 
  [ 
    if Ticks - birthTicks > halflife 
    [ 
      die 
    ] 
  ] 
  ask B-glucosidases 
  [ 
    if Ticks - birthTicks > halflife 
    [ 
      die 
    ] 
  ] 
  if EnzymeSystem = "Complexed" 
  [ 
    move-bacteria-complexed 
  ] 
  if EnzymeSystem = "NonComplexed" 
  [ 
    set randiffusionexo random 100 
    set randiffusionendo random 100 
    set randiffusiongluco random 100 
    set enzymeconstant random 100 
    set decideenzyme random 100 
    move-bacteria-noncomplexed 
    move-exoglucanases 
    move-endoglucanases 
    move-B-glucosidases 
  ] 
  if EnzymeSystem = "Hybrid" 
  [ 
    set randiffusionexo random 100 
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    set randiffusionendo random 100 
    set randiffusiongluco random 100 
    set enzymeconstant random 100 
    set decideenzyme random 100 
    move-bacteria-hybrid 
    move-exoglucanases 
    move-endoglucanases 
    move-B-glucosidases 
  ] 
  do-sugar-intake 
  move-celluloses 
  do-plots 
  ask celluloses 
  [ 
    check-ifiamtheleader 
    decide-neighbour 
    decide-chainlength 
  ] 
end 
 
to do-sugar-intake 
  if GlucoseIntake = true 
  [ 
    let rangluco random 100 
    if rangluco < PrbGluIntake 
    [ 
      ask celluloses with [mychainlength = 1] 
      [ 
        if any? bacteria-here or any? bacteriac-here or any? bacteriah-here 
        [ 
          output-print (word "Intake of Cellulose no." [who] of self ".It is a glucose") 
          set celluloseate celluloseate + 1 
          output-print (word "total cellulose intake:" celluloseate) 
          output-print (word "percent cellulose intake:" (celluloseate * 100 / (CelluloseLength 
* CelluloseChains))) 
          die 
        ] 
      ] 
    ] 
  ] 
  if CellobioseIntake = true 
  [ 
    let ranbio random 100 
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    if ranbio < PrbBioIntake 
    [ 
      ask celluloses with [mychainlength = 2] 
      [ 
        if any? bacteria-here or any? bacteriac-here or any? bacteriah-here 
        [ 
          output-print (word "Intake of Cellulose chain no." [chain] of self ".It is a cellobiose") 
          set celluloseate celluloseate + 2 
          output-print (word "total cellulose intake:" celluloseate) 
          output-print (word "percent cellulose intake:" (celluloseate * 100 / (CelluloseLength 
* CelluloseChains))) 
          ask celluloses with [chain = [chain] of myself] 
          [ 
            die 
          ] 
        ] 
      ] 
    ] 
  ] 
  if CellotrioseIntake = true 
  [ 
    ask celluloses with [mychainlength = 3] 
    [ 
      let rantri random 100 
      if rantri < PrbTriIntake 
      [ 
        if any? bacteria-here or any? bacteriac-here or any? bacteriah-here 
        [ 
          output-print (word "Intake of Cellulose chain no." [chain] of self ".It is a 
cellotriose")  
          set celluloseate celluloseate + 3 
          output-print ( word "total cellulose intake:" celluloseate) 
          output-print (word "percent cellulose intake:" (celluloseate * 100 / (CelluloseLength 
* CelluloseChains))) 
          ask celluloses with [chain = [chain] of myself] 
          [ 
            die 
          ] 
        ] 
      ] 
    ] 
  ] 
end 
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to move-celluloses 
  ask celluloses with [amileader = 1] 
    [ 
      set heading random 360 
    ] 
  ask celluloses with [amileader = 0] 
    [ 
      ifelse cellulose leader = nobody 
      [ 
        check-leader 
      ] 
      [ 
        set heading [heading] of cellulose leader 
      ] 
    ] 
  ask celluloses 
    [ 
      ifelse ChainLengthEffect = true 
      [ 
        ifelse cellulosemovement = false 
        [ 
        ] 
        [ 
          fd (1 / (cellulosemovementconstant * mychainlength)) 
        ] 
      ] 
      [ 
        ifelse cellulosemovement = false 
        [ 
        ] 
        [ 
          fd 1 
        ] 
      ] 
    ] 
  tick 
end 
 
to move-bacteria-noncomplexed 
  ask bacteria 
  [ 
    set heading random 360 
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    fd 1 
  ] 
  if count celluloses with [mychainlength > 1] > 0 
  [ 
    if EnzymeProductionRate > enzymeconstant 
    [ 
      ifelse decideenzyme < CompositionExo 
      [ 
        ask one-of bacteria [hatch-exoglucanases 1 [set color blue set size 0.01 set shape 
"arrow" set birthTicks ticks]] 
      ] 
      [ 
        ifelse decideenzyme < 100 - CompositionGluco and decideenzyme > 
CompositionExo 
        [ 
          ask one-of bacteria [hatch-endoglucanases 1 [set color violet set size 0.01 set shape 
"arrow" set birthTicks ticks]] 
        ] 
        ;if decideenzyme > CompositionExo + CompositionEndo 
        [ 
          ask one-of bacteria [hatch-B-glucosidases 1 [set color yellow set size 0.01 set shape 
"arrow" set birthTicks ticks]] 
        ] 
      ] 
    ] 
  ] 
end 
 
to move-bacteria-complexed 
  ask bacteriac 
  [ 
    set heading random 360 
    fd 1 
    if any? celluloses-here with [mychainlength > 3] 
    [ 
      break-chain 
    ] 
  ] 
end 
 
to break-chain 
  print "yo!" 
  ask one-of celluloses-here with [mychainlength > 1] 
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    [ 
      let downstreamC count celluloses with [who < [who] of myself and chain = [chain] of 
myself] 
      let upstreamC count celluloses with [who > [who] of myself and chain = [chain] of 
myself] 
      ifelse downstreamC < upstreamC 
        [ 
          set numberofchains numberofchains + 1 
          ask celluloses with [who > [who] of myself and chain = [chain] of myself] 
          [       
            set chain numberofchains 
            check-leader 
          ]  
        ] 
        [ 
          ifelse upstreamC < downstreamC 
            [ 
              set numberofchains numberofchains + 1 
              ask celluloses with [who > [who] of myself and chain = [chain] of myself] 
              [       
                set chain numberofchains 
                check-leader 
              ]  
            ] 
            [ 
              set numberofchains numberofchains + 1 
              ask celluloses with [who > [who] of myself and chain = [chain] of myself] 
              [       
                set chain numberofchains 
                check-leader 
              ]  
            ] 
        ] 
    ] 
end 
 
to move-bacteria-hybrid 
  ask bacteriaH 
  [ 
    set heading random 360 
    fd 1 
    if any? celluloses-here with [mychainlength > 3] 
    [ 
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      break-chain 
    ] 
  ] 
  if count celluloses with [mychainlength > 1] > 0 
  [ 
    if EnzymeProductionRateH > enzymeconstant 
    [ 
      ifelse decideenzyme < CompositionExo 
      [ 
        print decideenzyme 
        ask one-of bacteriaH [hatch-exoglucanases 1 [set color blue set size 0.5 set shape 
"arrow"]] 
      ] 
      [ 
        ifelse decideenzyme < 100 - CompositionGluco and decideenzyme > 
CompositionExo 
        [ 
          ask one-of bacteriaH [hatch-endoglucanases 1 [set color violet set size 0.5 set shape 
"arrow"]] 
        ] 
        [ 
          ask one-of bacteriaH [hatch-B-glucosidases 1 [set color yellow set size 0.5 set shape 
"arrow"]] 
        ] 
      ] 
    ] 
  ] 
end 
 
to move-exoglucanases 
  ask exoglucanases 
  [ 
    set heading random 360 
    fd 1 
    if any? celluloses-here with [mychainlength > 2] 
    [ 
      ifelse (count endoglucanases-here + count exoglucanases-here +  count B-glucosidases-
here) < 2 
      [ 
        let ranexo random 100 
        if PrbExo > ranexo / 100 
        [ 
          ask one-of celluloses-here with [mychainlength > 2] 
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          [ 
            let downstreamexo count celluloses with [who < [who] of myself and chain = 
[chain] of myself] 
            let upstreamexo count celluloses with [who > [who] of myself and chain = [chain] 
of myself] 
            if downstreamexo = 2 
            [ 
              set numberofchains numberofchains + 1 
              cut-exo-down 
              output-print (word "Number of Cellulose chains is" numberofchains) 
              set celluloseidexo [who] of myself 
            ] 
            if upstreamexo = 2 
            [ 
              set numberofchains numberofchains + 1 
              cut-exo-up 
              output-print (word "Number of Cellulose chains is" numberofchains) 
              set celluloseidexo [who] of myself 
            ] 
          ] 
        ] 
      ] 
      [ 
        output-print "Too many Cellulases here" 
      ] 
    ] 
  ] 
end 
 
to move-endoglucanases 
  ask endoglucanases 
  [ 
    set heading random 360 
    fd 1 
    if any? celluloses-here with [neighbour = 2 and mychainlength > 3] 
    [ 
      ifelse (count endoglucanases-here + count exoglucanases-here +  count B-glucosidases-
here) < 2 
      [ 
        let ranendo random 100 
        if PrbEndo > ranendo / 100 
        [ 
          ask one-of celluloses-here with [neighbour = 2 and mychainlength > 3] 
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          [ 
            let downstreamendo count celluloses with [who < [who] of myself and chain = 
[chain] of myself] 
            let upstreamendo count celluloses with [who > [who] of myself and chain = [chain] 
of myself] 
            ifelse downstreamendo > upstreamendo 
            [ 
              set numberofchains numberofchains + 1 
              cut-endo-down 
              output-print (word "Number of Cellulose chains is" numberofchains) 
              set celluloseidendo [who] of myself 
            ] 
            [ 
              set numberofchains numberofchains + 1 
              cut-endo-up 
              output-print (word "Number of Cellulose chains is" numberofchains) 
              set celluloseidendo [who] of myself 
            ] 
          ] 
        ] 
      ] 
      [ 
        output-print "Too many Cellulases here" 
      ] 
    ] 
  ] 
end 
 
to move-B-glucosidases 
  ask B-glucosidases 
  [ 
    set heading random 360 
    fd 1 
    if any? celluloses-here with [mychainlength = 2] 
    [ 
      ifelse (count endoglucanases-here + count exoglucanases-here +  count B-glucosidases-
here) < 2 
      [ 
        let rangluco random 100 
        if PrbGluco > rangluco / 100 
        [ 
          ask one-of celluloses-here with [mychainlength = 2] 
          [ 
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            let downstreamgluco count celluloses with [who < [who] of myself and chain = 
[chain] of myself] 
            let upstreamgluco count celluloses with [who > [who] of myself and chain = 
[chain] of myself] 
            ifelse downstreamgluco > upstreamgluco 
            [ 
              set numberofchains numberofchains + 1 
              cut-gluco-down 
              output-print (word "Number of Cellulose chains is" numberofchains) 
              set celluloseidgluco [who] of myself 
            ] 
            [ 
              set numberofchains numberofchains + 1 
              cut-gluco-up 
              output-print (word "Number of Cellulose chains is" numberofchains) 
              set celluloseidgluco [who] of myself 
            ] 
          ] 
        ] 
      ] 
      [ 
        output-print "Too many Cellulases here" 
      ] 
    ] 
  ] 
end 
 
to check-leader 
  let k 1 
  repeat numberofchains 
  [ 
    ifelse one-of celluloses with [chain = k] = nobody 
    [ 
    ] 
    [ 
      ask one-of celluloses with [chain = k] 
      [ 
        set wholist [who] of celluloses with [chain = k] 
      ] 
      ask celluloses with [chain = k] 
      [ 
        set leader min wholist 
      ] 
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    ] 
    set k k + 1 
  ] 
end 
 
to decide-neighbour 
  ask celluloses 
  [ 
    set neighbour count (celluloses-on neighbors) with [chain = [chain] of myself] 
  ] 
end 
 
to decide-chainlength 
  ask celluloses 
  [ 
    set mychainlength count celluloses with [chain = [chain] of myself] 
  ] 
end 
 
to check-ifiamtheleader 
  ask celluloses 
  [ 
    ifelse leader = [who] of self [set amileader 1] [set amileader 0] 
  ] 
end 
 
to cut-exo-up 
  output-print (word "Cellulose cut by exogluconase" celluloseidexo) 
  ask celluloses with [who > [who] of myself and chain = [chain] of myself] 
    [ 
      set chain numberofchains 
      check-leader 
    ] 
end 
 
to cut-exo-down 
  output-print (word "Cellulose cut by exogluconase" celluloseidexo) 
  ask celluloses with [who < [who] of myself and chain = [chain] of myself] 
    [ 
      set chain numberofchains 
      check-leader 
    ] 
end 
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to cut-endo-up 
  output-print (word "Cellulose cut by endogluconase" celluloseidendo) 
  ask celluloses with [who > [who] of myself and chain = [chain] of myself] 
    [       
      set chain numberofchains 
      check-leader 
    ]  
end 
 
to cut-endo-down 
  output-print (word "Cellulose cut by endogluconase" celluloseidendo) 
  ask celluloses with [who < [who] of myself and chain = [chain] of myself] 
    [       
      set chain numberofchains 
      check-leader 
    ]  
end 
 
to cut-gluco-up 
  output-print (word "Cellulose cut by B-glucosidase" celluloseidgluco) 
  ask celluloses with [who > [who] of myself and chain = [chain] of myself] 
    [       
      set chain numberofchains 
      check-leader 
    ]  
end 
 
to cut-gluco-down 
  output-print (word "Cellulose cut by B-glucosidase" celluloseidgluco) 
  ask celluloses with [who < [who] of myself and chain = [chain] of myself] 
    [      
      set chain numberofchains 
      check-leader 
    ]  
end 
 
to do-plots 
  set-current-plot "Glucose Concentration" 
  set-current-plot-pen "Glucose" 
  plot count celluloses with [mychainlength = 1] 
  set-current-plot-pen "Cellobiose" 
  plot count celluloses with [mychainlength = 2] 
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  set-current-plot "Enzyme Expression" 
  set-current-plot-pen "ExoExpression" 
  plot count exoglucanases 
  set-current-plot-pen "EndoExpression" 
  plot count endoglucanases 
  set-current-plot-pen "GlucoExpression" 
  plot count B-glucosidases 
end 
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APPENDIX B 
 

Matlab code for Sequence extraction algorithm 

clear %clear screen. 
clc %clear variables. 
  
fidw = fopen('/data1/Solexa/Fong_sample1_s_1_sequence_03_22_09_output.txt','wt'); 
%open specified file for writing. 
fidr = fopen('/data1/Solexa/Fong_sample1_s_1_sequence_03_22_09.txt','r'); %open 
specifiend file for reading. 
  
[seq,pos] = textscan(fidr,'%s'); %read the file with each line as seperate string. 
  
for i=2:4:length(seq{1,1}) %sequences are 2,6,10,14... 
    current_string = char(seq{1,1}(i)); %extract the current sequence 
    fprintf(fidw, '%s\n', current_string); %write current sequence to specified file as output 
end 
  
fclose(fidw); %close files 
fclose(fidr); 
 

 

Python code for building base call and coverage tables 

 

#script purpose: 
 
import sys 
 
#decide whether to consider only U0, U1, etc... 
keep = {'U0': 1, 'U1': 1} 
 
#read mom file 
inputfilename = sys.argv[1] 
 
#bases, together with two functions, allows creation of reverse complement of reads (if 
read direction == 'R') 
bases = {'A':'T', 'C':'G', 'G':'C', 'T':'A', 'N':'N'} 
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def complement(s): 
 letters = list(s) 
 letters = [bases[base] for base in letters] 
 return ''.join(letters) 
def reverse_complement(s): 
 s = list(s) 
 s.reverse() 
 s = ''.join(s) 
 s = complement(s) 
 return s 
 
#make a dictionary: key is position, value is reference genome base at that position 
refgenome = {} 
pos = 1 
file = open('tfusca.genome.fasta.txt') 
while True: 
 line = file.readline() 
 if line == '': break 
 line = line.rstrip() 
 if line == '': continue 
 #skip header line 
 if line[0] == '>': continue 
 for base in line: 
  refgenome[pos] = base 
  pos += 1 
 
#:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
::: 
#read results... 
pos2results = {} 
file = open(inputfilename) 
#file = open('short') 
while True: 
 line = file.readline() 
 if line == '': break 
 line = line.rstrip() 
 if line == '': continue 
 if line[0] == '#': continue 
 col = line.split('\t') 
 #this is to make sure read has at most x mismatches, maps to a unique position on 
the genome, and is from e coli... 
 if col[2] in keep and 'Thermobifida fusca YX' in line: 
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  [readid, readseq, matchtype, numzero, numone, numtwo, refid, start, 
direction, unused] = line.split('\t')[:10] 
   
  #ensure no gaps found, if so stop and deal with these 
  if len(col) > 10: 
  # assert not 'X' in col[10], 'gap found:\n%s' % (line) 
   if 'X' in col[10]: 
       continue 
   
  #if direction of read is 'R', get reverse complement & use this in results 
  if direction == 'R': 
   readseq = reverse_complement(readseq) 
 
  #walk thru each base in the read... 
  for i, base in enumerate(readseq): 
   # i is the ith base in the read -> the position of this in the genome is 
the start pos of this read + i 
   pos = int(start) + i 
    
   #a check only for the U0 case 
   #assert base == refgenome[pos], 'Error: in U0 match, %s, pos %s, 
%s != %s (ref)' % (readseq, str(pos), base, refgenome[pos]) 
    
   #if no results for this position up to now, initialize counts for this 
position 
   if not pos in pos2results: 
    pos2results[pos] = {'A':0, 'C':0, 'G':0, 'T':0, 'N':0, 'Tot':0} 
     
   #ensure that the base at this position is one of: A, C, G, T, or N  
   assert base in pos2results[pos], 'Unknown base: %s, in: %s, seq: %s' 
% (base, readid, readseq) 
    
   #add to counts for this base 
   pos2results[pos][base] += 1 
    
   #add to coverage at this position 
   pos2results[pos]['Tot'] += 1 
  
#get all positions and sort    
positions = pos2results.keys() 
positions.sort() 
 
#these are coverages and percents for which we will keep results 
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coverages = [1, 5, 10, 15, 20, 25, 30] 
percents = [0.75, 0.80, 0.85, 0.90, 0.95, 1] 
 
table, detailedtable = {}, {} 
covfile = open(inputfilename + '.coverage.tfusca.out', 'w') 
for pos in positions: 
 
 #the base for this position in the ref genome sequence... 
 refbase = refgenome[pos] 
  
 #initialize the base call and the max counts for this position from the sequencing 
run 
 #call from sequencing at this position is simply the base with the greatest number 
of counts 
 call, max = '', 0 
 for base in ['A', 'C', 'G', 'T']: 
  count_at_this_pos = pos2results[pos][base] 
  if count_at_this_pos > max: 
   max = count_at_this_pos 
   call = base 
 #get coverage at this position 
 thiscoverage = pos2results[pos]['Tot'] 
  
 #calculate agreement across all reads for this position (what % of total coverage is 
the number of reads with 'called' base?) 
 thispercent = float(max)/thiscoverage 
  
 #ensure that 'thispercent' is <= 1 and >= 0 (should be a percent) 
 assert thispercent <= 1, 'Error in max agreement percent...max: %s, cov: %s, perc: 
%s' % (str(max), str(thiscoverage), str(thispercent)) 
 assert thispercent >= 0, 'Error in max agreement percent...max: %s, cov: %s, perc: 
%s' % (str(max), str(thiscoverage), str(thispercent)) 
  
 for c in coverages: 
  for p in percents: 
   if not (c, p) in table: 
    table[(c, p)] = 0 
    detailedtable[(c, p)] = {} 
   #increment counts if cutoff criteria satisfied and called base is 
different from reference base  
   if (thispercent >= p and thiscoverage >= c and call != refbase): 
    table[(c, p)] += 1 
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    detailedtable[(c, p)][('\t').join(   [ str(pos), 
str(pos2results[pos]['A']), str(pos2results[pos]['C']), str(pos2results[pos]['G']), 
str(pos2results[pos]['T']), str(pos2results[pos]['Tot']), call, refbase ]   )] = 1 
  
 print >>covfile, '%s' % (    ('\t').join(   [ str(pos), str(pos2results[pos]['A']), 
str(pos2results[pos]['C']), str(pos2results[pos]['G']), str(pos2results[pos]['T']), 
str(pos2results[pos]['Tot']), call, refbase ]   )   ) 
 
 
coords = table.keys() 
coords.sort() 
tablefile = open(inputfilename + '.table.tfusca.out', 'w') 
for c, p in coords: 
 print >>tablefile, c, p, table[(c, p)] 
 
detailed = open(inputfilename + '.detailedres.tfusca.out', 'w') 
for c, p in coords: 
 print >>detailed, c, p 
 for case in detailedtable[(c, p)]: 
  print >>detailed, '   ' + case 
 
 

Python code for printing gene names with mutations 

 

import sys 
 
#read mom output file 
momfile = sys.argv[1] 
 
file = open('mut.txt') 
line = file.readline() 
line = line.rstrip() 
basepos = line.split('\t') 
for k in range (len(basepos)): 
 print basepos[k] 
for j in range (len(basepos)): 
 file1 = open(momfile,'r') 
 while True: 
  line1 = file1.readline() 
  if line1 == '': break 
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  line1 = line1.rstrip() 
  if line1 == '': continue 
  if line1[0] == '#': continue 
  col = line1.split('\t')[:10] 
  if len(col) > 10: continue 
  if len(col) < 7: continue 
  if basepos[j] == col[7]: 
#   print col[7] 
   print line1 
   print basepos[j] 
############## write code to check each basepos against the mom output file if found  
split the line and get the gene name and save it in a file 
 

 

Python code for mutation analysis 

 

#script purpose: interpret results where sequences differ compared to reference 
 
import sys 
 
#read coverage file 
coveragefile = sys.argv[1] 
 
counts = {0:0, 1:0, 5:0, 10:0, 15:0, 20:0, 25:0, 30:0, 35:0, 40:0, 45:0, 50:0, 55:0, 60:0, 80:0, 
100:0}  
file = open(coveragefile) 
while True: 
 line = file.readline() 
 if line == '': break 
 line = line.rstrip() 
 if line == '': continue 
 if line[0] == '#': continue 
 col = line.split('\t') 
 
 cov = int(col[5]) 
  
 for c in counts: 
  if cov >= c: 
   counts[c] += 1 
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for c in counts: 
 print c, counts[c] 
 

 

 

Python code for coverage analysis 

 

import sys 
 
total = 0 
countlines = 0 
max = 0 
#read base call table 
inputfilename = sys.argv[1] 
file1 = open(inputfilename,'r') 
while True: 
 line1 = file1.readline() 
 if line1 == '': break 
 line1 = line1.rstrip() 
 if line1 == '': continue 
 countlines += 1 
 col = line1.split('\t')[:8] 
 total = total + int(col[5]) 
 if int(col[5]) > max: 
  max = int(col[5]) 
  line = line1 
print max 
print line 
print "If ecoli" 
averageecoli = total / 4600000 
print averageecoli 
print "If tfusca" 
averagetfusca = total / 3642249 
print averagetfusca 
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